
Freedomotic Developer Manual
Release 5.6.0

Freedomotic Team

Apr 06, 2022

The Project

1 What is Freedomotic? 2
1.1 Vision . 2
1.2 Mission . 2
1.3 Current development stage . 3

2 Project History 4

3 Team 5

4 Features 6

5 Developers Quick Start 8
5.1 Requirements . 8
5.2 Set your local development environment . 8
5.3 Git repository is an SDK . 9
5.4 Create a build release . 9
5.5 Support . 9

6 Maven quick reference sheet 10
6.1 Priming build . 10
6.2 How to start Freedomotic . 10
6.3 Compile and test your own plugin . 10
6.4 Upload your own plugin on the marketplace . 11

7 Contributors workflow 12
7.1 How to contribute . 12
7.2 More Info . 13

8 The ‘Hello World’ Plugin 14
8.1 Get familiar with Freedomotic . 14

9 Architecture components 18
9.1 Framework . 18
9.2 Plugins . 18
9.3 Plugins, Objects and Automations interaction . 20

10 Freedomotic Messaging System 22
10.1 A Message Journey . 23

i

11 Channels 27
11.1 Wildcard subscription . 27
11.2 Channel Examples . 28

12 Data structures 29
12.1 Environment topology . 29
12.2 Plugins . 30
12.3 Accessing Data Structures from Crosslanguage Plugins . 31

13 What is a plugin? 32
13.1 Plugin Features . 32
13.2 How to make a non-Java application communicate with Freedomotic 32

14 Plugins manifest and configuration 33
14.1 What’s inside the manifest . 33
14.2 Add configuration blocks to your plugin . 34
14.3 Messaging channel . 34

15 Create a new plugin 35
15.1 From template . 35
15.2 From an archetype . 35
15.3 Behind the scene . 36
15.4 Plugin folder structure . 36

16 Plugin lifecycle 37

17 Bind things state to hardware data 38
17.1 Read data from hardware . 38
17.2 Specify the new object state in the notified event . 38
17.3 Create a hardware trigger to be configured as “Data source” . 39
17.4 Write data to hardware . 39

18 Bind things state to web services 40
18.1 Parse data from the Webservice . 40
18.2 Send a Freedomotic event . 40

19 Handle plugin errors 43

20 Listen to Events programmatically 45

21 Auto discover and auto configure things 46
21.1 How to enable auto discovering in your plugin . 46

22 Internationalization 48
22.1 Adding internationalization support . 48
22.2 Behind the scenes - what happens when calling i18n.msg()? . 49
22.3 Making custom plugin translations . 49
22.4 Accessing custom plugin translations . 49
22.5 Composing strings . 49

23 Plugin samples 50

24 What is a thing? 51

25 Create new thing types 52
25.1 Predefined behaviors . 53

ii

25.2 Load the object as a plugin . 53
25.3 Create instances of your new object type . 53
25.4 Boolean behavior . 54
25.5 Ranged int behavior . 55
25.6 Exclusive multivalue behavior . 55
25.7 Views section . 55
25.8 Actions section . 56

26 Add new thing templates 57

27 Events 58
27.1 Generic event properties . 58
27.2 Predefined events . 58
27.3 More info in Javadoc . 59

28 Triggers 60
28.1 How to filter events using triggers . 60
28.2 How to filter received event parameters . 60
28.3 Max execution limit and flood control . 61
28.4 Listening to Channels with wildcard paths . 61
28.5 Trigger scripting . 61
28.6 Deploy a trigger . 62
28.7 Examples . 62

29 Commands 65
29.1 Commands fields . 65
29.2 The structure of a command . 67
29.3 Commands for the BehaviorManager . 67
29.4 Command examples . 67
29.5 Command Scripting . 69

30 Reactions (aka Automations) 70
30.1 Composing triggers in automations (extra-conditions) . 71

31 Http helper 72
31.1 Retrieve text content (no authentication) . 72
31.2 Retrieve text content (with authentication) . 73
31.3 Perform XPath queries on an URL content . 73

32 Serial helper 74
32.1 Complete examples . 75

33 Udp helper 76
33.1 How to send a packet . 76

34 Natural language processing 77
34.1 How to work . 77
34.2 How to use it . 77
34.3 Code sample . 77

35 P2P 79
35.1 Roadmap . 80
35.2 TODO . 80
35.3 How to use . 81

iii

36 Security: authentication and authorization 82
36.1 Authentication . 82
36.2 Authorization . 83

37 Freedomotic API 85

iv

Freedomotic Developer Manual, Release 5.6.0

Everything you need to know about Freedomotic development.

Contents:

The Project 1

CHAPTER 1

What is Freedomotic?

Freedomotic is an open source, flexible and secure Internet of Things (IoT) development framework. It can be used to
build and manage modern smart spaces. It is targeted at individuals (home automation) as well as businesses (smart
retail environments, ambient aware marketing, monitoring and analytics, etc). Freedomotic can interact with well-
known automation protocols as well as with “do it yourself” solutions. It treats the web, social networks and branded
frontends as first class components of the system.

It allows you to build smart spaces. Freedomotic can manage many spaces, ranging from from small apartments to
huge buildings, like museums, schools, corporate offices, malls and university campuses. For OEMs and software
developers, Freedomotic is the solution to create building automation systems, smart retail environments, home au-
tomation managed services and innovative IoT ambient aware applications, drastically reducing development effort
and time to market.

Freedomotic can be integrated with popular building automation technologies like BTicino OpenWebNet, Modbus
RTU, Z-wave as well as custom automation projects using Arduino devices, do it yourself boards, third party graphical
frontends, text to speech engines, motion detection using IP cameras stream, social networks, and much more... All
this features can be delivered from a marketplace as downloadable plugins.

1.1 Vision

Bridging the gap between the physical and digital world; connecting people to things and value-added business ser-
vices.

1.2 Mission

Developing an application framework, which reduces the effort and time to maket required to produce solutions based
on the Internet of Things concept. This means we are making the environment aware of the people and the thinngs in
it. Things can reach a new level of usefulness thanks to their new connected nature, allowing them to leverage the web
and all of the information based services it provides.

2

Freedomotic Developer Manual, Release 5.6.0

1.3 Current development stage

The project is currently in an advanced beta stage. We are using the home automation segment to test and attract users
but its range of application is much wider.

The final purpose of the project is to build a sort of Content Management System (CMS) for building automation. It
will abstract and make easily available the common features required by building automation system in a way privates
and companies can extend it to create custom context aware/environment aware services.

1.3. Current development stage 3

CHAPTER 2

Project History

The Department of Information Engineering and Computer Science (DISI) at the University of Trento had several
research teams working on sensor networks for home monitoring and automation.

They needed a framework capable of easily integrating different projects developed in heterogeneous languages. This
framework needed to make those projects work together, help simplify testing, and produce visual demos to show to
research partners. Using a common framework, teams at DISI could focus on the core of their research instead of
developing custom solutions for each individual project. The Freedomotic project was created to fulfill these needs.

The main goals and requirement of Freedomotic were: maintain a framework which was flexible and modular which
could be easily integrated and adapted to different (and potentially unknown) needs, allowed for simple testing, and
could produce visual demos.

These same goals and requirements continue to hold true today.

4

CHAPTER 3

Team

The Freedomotic team consists of a group of enthusiasts who work on the framework on a day to day basis.

Main contributors
Name From Contacts Duties
Enrico
Nicoletti

Italy info@freedomotic.comProject Founder, Project vision, Core Developer

Mauro
Cicolella

Italy mauro@freedomotic.comCommunity Manager, Automation Protocols Integration, Marketing
and end-users, Communication, Quality Assurance

Gabriel Pulido
de Torres

Spain gabriel@freedomotic.comAPIs Engineer, Mobile Platform Developer, Product Strategist,
Technical Research, Development Workflow Manager

Alberto
Mengoli

Italy al-
berto@freedomotic.com

.Net Frontend Development, Testing, Usability feedback

Matteo
Mazzoni

Italy mat-
teo@freedomotic.com

Core Developer, APIs Engineer, Plugins Developer, Technical
Research

Table 3.1: Past members

Name From Duties
Niko Zarzani Italy UI Development
Roberto Socrates Spain Core Developer, Software architect

Many other developers have contributed to the project. Here the complete list.

5

mailto:info@freedomotic.com
mailto:mauro@freedomotic.com
mailto:gabriel@freedomotic.com
mailto:alberto@freedomotic.com
mailto:alberto@freedomotic.com
mailto:matteo@freedomotic.com
mailto:matteo@freedomotic.com
https://github.com/freedomotic/freedomotic/graphs/contributors

CHAPTER 4

Features

Identity: Freedomotic allows each Thing to have a persistent unique identifier, which allows you to address it from all
over the world, and it works no matter which automation protocol drives the Thing. You are safe from the protocols
hell out there.

Services: Freedomotic is different, automations are not the end of the story, this framework is centred around the
concept of Services for users, which may use automations to achive a goal. It is the Internet of Things at a new level.
ThinG Wider!

Simulation: Freedomotic allows you to fully run it without any sensors or actuators connected. You can configure and
test your automations before buying the hardware. This is great when planning a system with your customers, giving
them a taste of the finished product.

Realtime Marketing: Freedomotic knows the environment topology (ie: rooms shapes and locations), the People and
Things in it. This allows for users in the environment to be tracked and profiled, in addition to creating 1 to 1 realtime
marketing campaigns. This feature is also great for disabled assistance and security focused systems.

Crosslanguage Rest API: Freedomotic allows you to control any aspect of the system with our JSON based REST
APIs, from listing and controlling the Things in an environment, to retrieving, installing and managing plugins, all
using familiar and developer-friendly technologies. The entire system is completely Events based. Components dialog
together using text Events and Commands, so it’s easy to integrate your ERP, CRM, or any legacy software you already
run on your own premises. This is also great for building custom-branded frontends for web, mobile and desktop. In
Freedomotic you can concurrently run as many frontends as you want, with the ability to have each one targeted to a
specific audience.

Distributed: Freedomotic can run as a decentralized peer to peer network with no single point of failure, and can be
deployed on a network of embedded systems like Raspberry Pi or on standard PCs and servers. For business this means
you can have an instance running in the cloud connected to different satellites. You can manage the configuration and
provide unique compute intensive features in the cloud (eg: face recognition) for a monthly fee.

Plugins: The system features are not hardcoded, and you can install new plugins at runtime. If you are interested in
plugins development, take a look at our Developers Getting Started tutorial. Any developed plugin can be uploaded to
an online marketplace (ours or your own) to allow 1-click installation.

Autodiscovery: Wouldn’t it be great if you could turn on a light and have it automatically configured on the virtual
environment map? Freedomotic can autodiscover the Things (eg: home automation devices) deployed in your real
environment. No more diving in complex configuration files.

6

Freedomotic Developer Manual, Release 5.6.0

History Aware: Freedomotic can track any status changes in the environment and persist them in a database for
analysis. For example, you can analyze consumption behaviors to implement energy-saving strategies, or you can
learn more about how your customers interact with your shop by monitoring their visit patterns.

Secure, Multilanguage and Multiuser: Freedomotic is built ground up with multilanguage, multiuser and security
features in mind. All these features come for free for each new plugin you develop, sparing a lot of time and effort.
You can focus on your core business and let Freedomotic do the heavy lifting.

7

CHAPTER 5

Developers Quick Start

5.1 Requirements

• Java JDK: Version 8 OpenJDK/Oracle JDK (to install on Ubuntu: sudo apt-get install openjdk-8-jdk)

• Maven: Version 2 or 3 (to install on Ubuntu: sudo apt-get install maven)

• Any OS with java support (Linux, Windows, Mac, Solaris ...)

Development status: beta testing

Current released version: Freedomotic Commander 5.6 RC4 (released on 16 Aug 2017)

5.2 Set your local development environment

1. Fork Freedomotic on GitHub

• Create an account on https://github.com if you don’t already have one

• Fork the Freedomotic repository by following this link: https://github.com/freedomotic/freedomotic/fork

• Create the local clone of your online fork with this command:

git clone https://github.com/YOUR-GITHUB-USERNAME/freedomotic.git

Now you are ready to work.

2. Enter the new local folder

cd freedomotic

3. Compile Freedomotic with maven

mvn clean install

8

https://sourceforge.net/projects/freedomotic/files/freedomotic-commander-5.6.0-rc4.zip/download
https://github.com
https://github.com/freedomotic/freedomotic/fork

Freedomotic Developer Manual, Release 5.6.0

4. IMPORTANT!!!! THIS IS REQUIRED: copy the example-data folder into freedomotic-core/data.

If you miss this step Freedomotic won’t start

cp -r data-example/ framework/freedomotic-core/data

5. Run Freedomotic

java -jar framework/freedomotic-core/target/freedomotic-core/freedomotic.jar

5.3 Git repository is an SDK

The Git repository is a complete SDK with all you need to code and test your Freedomotic plugins. Once compiled
for the first time, open the freedomotic-core project with your favourite IDE and start it to try Freedomotic.

To develop your own plugin, you can start from the hello-world example project included in
GIT_ROOT/plugins/devices/hello-world.

Open it in your IDE, make some changes and compile. It will be automatically installed into the Freedomotic runtime
(freedomotic-core project). Just start freedomotic-core to try your latest changes.

5.4 Create a build release

To create a new release package execute inside the ROOT folder

mvn clean install

The zip file containing the build release is located inside GIT_ROOT/framework/freedomotic-core/target/release/.

The release process is based on create-release.xml file.

5.5 Support

Please join our international or Italian community and share your experience.

5.3. Git repository is an SDK 9

https://raw.githubusercontent.com/freedomotic/freedomotic/master/scripts/create-release.xml
https://groups.google.com/forum/#!forum/freedom-domotics
https://groups.google.com/forum/#!forum/freedomotic-it
https://goo.gl/Iq8C6e

CHAPTER 6

Maven quick reference sheet

Starting from Version 5.5, the Freedomotic build cycle is managed with Apache Maven. This quick reference explains
how Maven phases are bound to specific tasks:

6.1 Priming build

First time compile, or to refresh the entire project and submodules

This will compile freedomotic-core and all basic plugins like base-objects, java-frontend, etc.

cd FREEDOMOTIC_ROOT
mvn clean install

6.2 How to start Freedomotic

You can do so from command line using

cd FREEDOMOTIC_ROOT
java -jar framework/freedomotic-core/target/freedomotic-core/freedomotic.jar

As an alternative, you can start freedomotic-core project from your favourite IDE.

6.3 Compile and test your own plugin

After doing changes to the plugin code...

This will compile your plugin and install it automatically into the Freedomotic runtime (freedomotic-core), ready to
be started

10

Freedomotic Developer Manual, Release 5.6.0

cd FREEDOMOTIC_ROOT/plugins/devices/YOUR_PLUGIN_NAME
mvn clean install

6.4 Upload your own plugin on the marketplace

Share your own plugin in a convenient and easy to install way

This will compile your own plugin, deploy it to the online Maven repository and publish the new artifact on the related
Freedomotic website marketplace page.

cd FREEDOMOTIC_ROOT/plugins/devices/YOUR_PLUGIN_NAME
mvn clean deploy -P market -D username="name" -D password="password"

More details on how to publish a plugin.

To know more about Maven phases, refer to the article “Maven: introduction to the lifecycle“

That’s all! Open your favourite IDE and start the freedomotic-core project to run Freedomotic on your PC.

6.4. Upload your own plugin on the marketplace 11

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

CHAPTER 7

Contributors workflow

A normal git development workflow should be used, with some considerations:

1. Always develop on a feature branch.

2. Never commit, rebase or merge changes into the master. Your forked master branch should just be a mirror of
the official one and must be pulled frequently to be up to date with latest features and bugfixes.

If you don’t follow the previous suggestions your pull request will probably be rejected.

As a recommendation, use meaningful branch names because they are going to be public.

7.1 How to contribute

Freedomotic follows the fork & pull process for collecting and quality-checking contributions from the development
community.

This process works as follows:

1. You can start by forking our main git repository. This will create a Freedomotic fork named YOUR-GITHUB-
USERNAME/freedomotic.git

2. Clone your fork locally by doing

git clone https://github.com/YOUR-GITHUB-USERNAME/freedomotic.git

3. On your local repository clone, create a branch with a meaningful name (e.g. new-feature-name). In case you
are working to solve one of the known issues, please include the issue in the branch name (e.g. fixing-Core-413).

Again, always develop on a branch.

4. When your proposed modifications are complete, you can generate a pull request, e.g. asking to merge fixing-
Core-413 into freedomotic/master. This can be done by publishing your new local branch online in your
repository fork

12

https://help.github.com/articles/using-pull-requests
https://github.com/freedomotic/freedomotic/fork
http://freedomotic.myjetbrains.com/youtrack/issues

Freedomotic Developer Manual, Release 5.6.0

git push origin BRANCHNAME

To generate a pull-request just click the Create pull request button on GitHub 6. Your pull request will be reviewed
by the Freedomotic Development Team that will merge it into the main repository or ask for further revisions.

7.2 More Info

If you are clueless, the procedure described above is covered in full details with screenshots https://help.github.com/
articles/using-pull-requests/#initiating-the-pull-request

7.2. More Info 13

https://help.github.com/articles/using-pull-requests/#initiating-the-pull-request
https://help.github.com/articles/using-pull-requests/#initiating-the-pull-request

CHAPTER 8

The ‘Hello World’ Plugin

Here you’ll learn how to add features starting from the hello-world plugin. This plugin is made of some boilerplate
Java code that you can use as base to create your own plugin.

Open the freedomotic maven project with your favourite IDE and compile it, if not already done. This will build a set
of modules. Remember, the freedomotic-core module is the Freedomotic runtime, start it from your IDE to have it
running.

Now open the hello-world module in your IDE and compile it. It will be automatically installed to the freedomotic-
core.

8.1 Get familiar with Freedomotic

Here are some simple changes you can make with the plugin “hello-world”.

8.1.1 Write a message to the GUI using a Freedomotic event

In the onRun() method of your plugin, write:

protected void onRun() {
//get and format the current date and time
DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");
Date date = new Date();
//create a freedomotic message event
MessageEvent message = new MessageEvent(null, "Hello world plugins says current

→˓time is " + dateFormat.format(date));
notifyEvent(message);

}

Then build your plugin, and start Freedomotic followed by the plugin. You will see a blue bubble with the current date
and time at the upper left side of the environment map.

14

https://github.com/freedomotic/freedomotic/tree/master/plugins/devices/hello-world

Freedomotic Developer Manual, Release 5.6.0

8.1.2 Make your plugin send emails

In the onRun() method of your plugin, write:

protected void onRun() {
MessageEvent message # new MessageEvent(this, "The mail text");
message.setType("mail"); //send this message as an email
message.setTo("destination@gmail.com"); //the destination mail address
notifyEvent(message);

}

Note: This requires the Mailer plugin to be installed and properly configured.

8.1.3 Print the list of things in the environment

In the onRun() method of your plugin, write:

protected void onRun() {
StringBuilder buffer = new StringBuilder();
for (EnvObjectLogic object : EnvObjectPersistence.getObjectList()) {

buffer.append(object.getPojo().getName() + "\n");
for (BehaviorLogic behavior : object.getBehaviors()) {

buffer.append(" " + behavior.getName() + ": " + behavior.
→˓getValueAsString() + "\n");

}
}

//print the string in the Freedomotic log using INFO level
LOG.info(buffer.toString());

}

Then build your plugin, and start Freedomotic followed by the plugin. Right click on the Log Viewer plugin to see
the list of things.

Note: Change the logging level to INFO, using the combobox of log viewer plugin, to filter out the less important
log records.

8.1.4 Change a thing location on the map

This piece of code iterates over all loaded things and moves objects of type Person to a random location.
The randomLocation() function should be implemented and must return a com.freedomotic.model.
geometry.FreedomPoint type (remember to add freedomotic-model.jar to your classpath)

protected void onRun() {
for (EnvObjectLogic anObject : EnvObjectPersistence.getObjectList()) {

if (anObject instanceof it.freedomotic.objects.impl.Person){
Person person = (Person)anObject;
FreedomPoint location = randomLocation();
person.getPojo().getCurrentRepresentation().setOffset(

(int)location.getX(),
(int)location.getY()

8.1. Get familiar with Freedomotic 15

http://freedomotic.com/content/plugins/mailer

Freedomotic Developer Manual, Release 5.6.0

);
person.setChanged(true);

}
}

}

8.1.5 Change things state programmatically

If you want to change the object state according to a value read from a web service, such as a weather forecast:
https://github.com/freedomotic/freedomotic/wiki/Bound-objects-state-to-web-services-data

If you want to change the object state according to a value read from a hardware device, like an Arduino relay board:
https://github.com/freedomotic/freedomotic/wiki/Bound-objects-state-to-hardware-data

8.1.6 Interact with users using a dialog box with multiple answers

You can take full advantage of other installed modules from your plugin. For example you can use a third party text to
speech plugin to make it say something programmatically from your plugin.

You don’t need to worry about how the external plugins works, you simply send to it a generic command. The example
below uses the Jfrontend plugin to prompt a dialog with three choices.

public void askSomething() {
final Command c = new Command();
c.setName("Ask something silly to user");
c.setReceiver("app.actuators.frontend.javadesktop.in");
c.setProperty("question", "<html><h1>Do you like Freedomotic?</h1></html>");
c.setProperty("options", "Yes, it's good; No, it sucks; I don't know");
c.setReplyTimeout(10000); //10 seconds

new Thread(new Runnable() {
public void run() {

Command reply = Freedomotic.sendCommand(c);
if (reply != null) {

String userInput = reply.getProperty("result");
if (userInput != null) {
System.out.println("The reply to the test question is " + userInput);
} else {

System.out.println("The user has not responded to the question
→˓within the given time");

}
} else {

System.out.println("Unreceived reply within given time (10 seconds)
→˓");

}
}

}).start();
}

8.1.7 Add a GUI to the plugin

To add a graphical interface, you must create a Jframe and link it to the plugin in onStart() with the following
code:

8.1. Get familiar with Freedomotic 16

https://github.com/freedomotic/freedomotic/wiki/Bound-objects-state-to-web-services-data
https://github.com/freedomotic/freedomotic/wiki/Bound-objects-state-to-hardware-data

Freedomotic Developer Manual, Release 5.6.0

gui = new PluginJFrame();

To open the GUI, right-click on the plugin icon.

8.1. Get familiar with Freedomotic 17

CHAPTER 9

Architecture components

Freedomotic is composed by a core framework and plugins .

9.1 Framework

The core part is a framework that:

1. implements a language independent messaging system based on Enterprise Integration Pattern. So you can
develop in your favorite language and just exchange messages with the other software components. The aim of the
messaging system is to link all software modules together in a flexible and abstract way, relating them using the
concept of channels (publish-subscribe to different levels of a topics hierarchy)

2. maintains an internal data structure representing the environment (topology, rooms connections as a graph, ...), the
things in zones and their state (on, off, open, closed, 50% dimmed, ...)

3. creates an abstraction layer so users and external software modules can use a high level logic like turn on
kitchen light instead of send to COM1 port the string #*A01AON##. This way a developer can
leverage other plugins features at a high logical level because the modules can see the same environment map as the
user. All data components (environment, objects, triggers, commands) can be defined in XML and easily exchanged
on the network between different nodes of the P2P Freedomotic network

4. provides a rules engine coupled with a natural language processing system to let the user write automations in plain
English like if outside is dark turn on living-room light. You can add, update and delete this
automations at runtime using any human computer interface like GUIs, or even speak them.

9.2 Plugins

Freedomotic plugins create additional features to the core framework and can be developed and distributed as com-
pletely independent packages on the Freedomotic marketplace.

18

Freedomotic Developer Manual, Release 5.6.0

Fig. 9.1: Freedomotic architecture

9.2. Plugins 19

Freedomotic Developer Manual, Release 5.6.0

9.2.1 Device plugins

Device plugins are generally developed to communicate with automation hardware like X10, KNX and so on, but also
can provide graphical frontends and “web service readers” as Freedomotic plugins just as any other source of info,
like webcams, text to speech engines and SMS senders can also be used.

9.2.2 Object plugins

Developers can also create object plugins which are pieces of software that models the behavior of objects like lamps,
doors, etc in order to instruct the framework on how these objects should behave.

For example, a lamp object plugin tells the framework that a lamp has a boolean behavior called powered and a
dimmer behavior which is represented by an integer from 0 to 100. A lamp can turn on, turn off and dimm. If
dimmer = 0% the lamp powered behavior is set to false and if dimmer > 0% powered becomes true.

Fig. 9.2: Plugins, things and automations

9.3 Plugins, Objects and Automations interaction

The final goal is to define an automation which can turn on the living room light when it is tea time (17 o’Clock).

1. The scheduler plugin notifies to Freedomotic the current time (17:00 PM).

2. A trigger named “it’s tea time” is configured to listen to all time based events. It carries a rule inside which is
event.time.hour == 17 AND event.time.minute == 0.

9.3. Plugins, Objects and Automations interaction 20

Freedomotic Developer Manual, Release 5.6.0

3. When the event is received by this trigger, the rule is evaluated. If the evaluation is successful then the trigger
fires, indicating that now it is not time to for tea.

#. At this point all the corresponding automation IF (trigger: it's tea time) THEN (command:
turn on livingroom light) is loaded by the system and the command is executed which forwards the generic
request turn on living room light to the plugin which can transform it to a protocol dependent command
(eg: send string A01AON on serial port /dev/ttyUSB0).

Fig. 9.3: Events, triggers, commands and automations

9.3. Plugins, Objects and Automations interaction 21

CHAPTER 10

Freedomotic Messaging System

Freedomotic uses simple structured messages (xml, json) to communicate with its components. This is done through
a Messaging Middleware (Apache ActiveMQ).

Freedomotic is based entirely on events and any change in the environment and any user interaction (eg: a click on the
GUI) generates events.

Events are published on channels and can be intercepted by triggers.

Each trigger may be associated with one or more commands defining a reaction or automation.

Utilizing this architecture, program behavior is not predetermined but is fully modificable at runtime, making it ex-
tremely flexible and adaptable to any possible use in building automation.

When a sensor communicates a change in the environment it sends out an event.

A trigger, which is a sort of an event filter, listens to the event subscribed to the channel on which this event is sent. If
the event is consistent with the trigger one or more commands will be executed. The command is automatically sent
to the actuator which is able to execute it.

• A sensor can be an hardware device like a luminosity sensor

• An event is fired by a sensor, for example luminosity in the kitchen is 30%

• A trigger can define an expression like if luminosity is less than 50%

• A command can be something like turn on the light in the kitchen

• An actuator can be relais board

The result of the interaction between event, trigger, and command is an automated action. In this case the automation
is if luminosity is less than 50% turn on the light in the kitchen.

Note: Triggers and commands are defined by the user using the Jfrontend graphical EventEditor. Triggers, com-
mands and automations are saved as XML files.

22

Freedomotic Developer Manual, Release 5.6.0

10.1 A Message Journey

The communication process of notification of an event to the execution of a command consists of several steps:

Event (notified by plugins or Freedomotic itself) -> Trigger (acting as an events filter to define simple use cases) ->
Command (executed by an actuator)

In this example we will analyze an automation composed by a single command: IF Livingroom light turns
on THEN announce its status using text to speech

What happens in the framework?

This is an event which describes a state change of a light which turns from OFF (powered=false) to ON (powered=true).
This kind of events is notified on channel app.event.sensor.object.behavior.change by a sensor plugin
for example a Modbus sensor.

Events can be notified through hardware protocol plugins, frontends or Freedomotic itself as in this case.

Here is an example event which informs all listeners that a ‘thing’ named Livingroom Light has changed:

<com.freedomotic.events.ObjectHasChangedBehavior>
<eventName>ObjectHasChangedBehavior</eventName>
<sender>Light</sender>
<payload>
<payload>

<com.freedomotic.reactions.Statement>
<logical>AND</logical>
<attribute>date.dayname</attribute>
<operand>EQUALS</operand>
<value>Sunday</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>date.day</attribute>
<operand>EQUALS</operand>
<value>23</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>date.month</attribute>
<operand>EQUALS</operand>
<value>September</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>date.year</attribute>
<operand>EQUALS</operand>
<value>2012</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>time.hour</attribute>
<operand>EQUALS</operand>
<value>9</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>time.minute</attribute>
<operand>EQUALS</operand>
<value>45</value>

10.1. A Message Journey 23

Freedomotic Developer Manual, Release 5.6.0

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>time.second</attribute>
<operand>EQUALS</operand>
<value>49</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>sender</attribute>
<operand>EQUALS</operand>
<value>Light</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>object.name</attribute>
<operand>EQUALS</operand>
<value>Livingroom Light</value>

</it.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>powered</attribute>
<operand>EQUALS</operand>
<value>true</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>brightness</attribute>
<operand>EQUALS</operand>
<value>0</value>

</com.freedomotic.reactions.Statement>
<com.freedomotic.reactions.Statement>

<logical>AND</logical>
<attribute>object.currentRepresentation</attribute>
<operand>EQUALS</operand>
<value>0</value>

</com.freedomotic.reactions.Statement>
</payload>

</payload>
<isValid>true</isValid>
<uid>116</uid>
<executed>true</executed>
<isExecutable>true</isExecutable>
<creation>1348386349837</creation>
<priority>0</priority>

</com.freedomotic.events.ObjectHasChangedBehavior>

You can define triggers to narrow any event just by listening on the event channel and setting a list of conditions (the
statements) that must be met in order to consider this trigger as fired. The trigger can then be used as the “WHEN/IF”
part of an automation (aka scenario).

Freedomotic starts with a set of predefined triggers which cover most use cases. At any time you can add new use
cases using an existing trigger as a template.

<trigger>
<name>Livingroom Light turns ON or OFF</name>
<channel>app.event.sensor.object.behavior.change</channel>
<payload>

10.1. A Message Journey 24

Freedomotic Developer Manual, Release 5.6.0

<payload>
<statement>

<logical>AND</logical>
<attribute>object.name</attribute>
<!-- allowed operand are EQUALS, REGEX, GREATER_THEN, GREATER_EQUAL_THEN,

→˓LESS_THEN, LESS_EQUAL_THEN -->
<operand>EQUALS</operand>
<value>Livingroom Light</value>

</statement>
<statement>

<logical>AND</logical>
<attribute>powered</attribute>
<operand>EQUALS</operand>
<!-- here you can write true to select only 'turns on' cases -->
<!-- here you can write false to select only 'turns off' cases -->
<!-- ANY is used to match any case -->
<value>ANY</value>

</statement>
</payload>

</payload>
</trigger>

In an automation you bind a trigger to one or more commands. In this case the automation is WHEN Livingroom
Light turns on THEN Say electric device status.

The command Say electric device status is shipped with the text to speech plugin (http://freedomotic.
com/content/plugins/text-speech) and looks like this:

<command>
<name>Say electric device status</name>
<description>say electric device status</description>
<receiver>app.actuators.media.tts.in</receiver>
<properties>
<properties>

<property name="say" value="=
if (@current.object.powered)

say="@current.object.name is on with brightness at @current.object.
→˓brightness";

else
say="@current.object.name is off";

"/>
</properties>
<tuples/>

</properties>
</command>

When a trigger is fired Freedomotic loads all related commands and evaluates them using runtime properties. So the
command above will look like this when received by the TTS Text to Speech plugin.

Every plugin has access to time and date information, the set of properties defined in the event and the current object
state if the event has something to do with environment objects (in this case a light).

Your plugin can use all this information for token substitution and scripting as for the ‘say’ property in the command
above. In the command below you can see how the ‘say’ property is evaluated by Freedomotic before sending it to the
text to speech plugin:

<command>
<name>Say electric device status [EVALUATED]</name>

10.1. A Message Journey 25

http://freedomotic.com/content/plugins/text-speech
http://freedomotic.com/content/plugins/text-speech

Freedomotic Developer Manual, Release 5.6.0

<description>say electric device status</description>
<receiver>app.actuators.media.tts.in</receiver>
<properties>
<properties>

<!-- Static properties for the text to speech actuator. -->
<!-- This are defined in data/cmd folder of the actuator itself -->
<!-- The 'say' property is evaluated using runtime properties -->
<property name="say" value="Livingroom Light is off."/>
<!-- ALL PROPERTIES BELOW ARE EVALUATED AT RUNTIME -->
<!-- generic data taken from the event which started the event-trigger-command

→˓chain. -->
<property name="event.sender" value="Light"/>
<property name="event.date.dayname" value="Sunday"/>
<property name="event.date.day" value="23"/>
<property name="event.date.month" value="September"/>
<property name="event.date.year" value="2012"/>
<property name="event.time.hour" value="10"/>
<property name="event.time.minute" value="30"/>
<property name="event.time.second" value="24"/>
<!-- the state of the object Livingroon Light when the event was fired -->
<property name="event.object.name" value="Livingroom Light"/>
<property name="event.brightness" value="0"/>
<property name="event.powered" value="false"/>
<property name="event.object.currentRepresentation" value="0"/>
<!-- the current state of the object Livingroom Light (when this command is

→˓executed -->
<property name="current.object.name" value="Livingroom Light"/>
<property name="current.object.type" value="EnvObject.ElectricDevice.Light"/>
<property name="current.object.protocol" value="unknown"/>
<property name="current.object.address" value="unknown"/>
<property name="current.object.brightness" value="0"/>
<property name="current.object.powered" value="false"/>

</properties>
</properties>

</command>

10.1. A Message Journey 26

CHAPTER 11

Channels

The concept of channel is central to the messaging system as events and commands are published on specific channels.

Events are initiated by a sensor plugin. From Freedomotic’s point of view a sensor is composed of a hardware device
and software connected to the middleware that manages it.

Events can be exchanged in any of the supported formats (e.g. POJO, JSON, XML) and are communicated to the
triggers through a publish/subscribe messaging channel. Each trigger must be subscribed to a channel to receive the
events traveling through it.

11.1 Wildcard subscription

It is possible to use wildcards for subscriptions in order to automatically include an entire range of events. For example,
if a sensor generates events on channel app.events.sensors.moving.person.P003 a trigger can listen to
this particular event to receive details about person P003’s movements. Otherwise if the trigger listens to app.
events.sensors.moving.person. it will receive information about the movement of all people detected in
the environment.

The wildcard semantic is as follows:

• period (.) is used to separate names in a path

• asterisk (*) is used to match any name in a path

• greater than sign (>) is used to recursively match any destination starting from this name

A trigger is a filter that can be used to decide whether a notified event has to be processed or not. Whenever an event
is processed by a trigger, the associated reaction is executed.

A reaction represents a link between a trigger and one or more command list executed by an actuator or another
sensing system.

It allows to control the processing flow of the commands, capturing the resulting values of their execution.

Every command list is executed in parallel within a dedicated thread (therefore several reactions can occur in paral-
lel). Each thread sequentially dispatches each command found in its own list using the request/reply pattern.

27

Freedomotic Developer Manual, Release 5.6.0

Notice that trigger and commands are reusable components, as they are not defined inside the reaction (which only
specify the structured the execution flow).

A command identifies an outgoing message from the middleware containing the definition of the receiver specified as
a Channel address (eg: app.plugins.protocols.modbus.in).

A command also contains all parameters needed to perform its execution. Commands are forwarded using re-
quest/reply messaging pattern while events use send-and-forget pattern. An actuator is the endpoint of the com-
munication process.

An actuator can physically execute the command in the environment (e.g. turn a light on or open a window). It is also
possible to query an actuator as if it were a sensor but only within its domain of control, for example it can reply to a
query notifying the state of a light under its control.

Trigger, reactions and commands are defined in XML files that compose the model of all the world entities Freedomotic
interacts with.

Such files are automatically loaded and saved to file by the middleware, ensuring data consistency.

11.2 Channel Examples

11.2. Channel Examples 28

CHAPTER 12

Data structures

If you plan to develop a plugin for Freedomotic you will need to access the framework data structures.

These types of data are used with building automation and the Freedomotic architecture:

1. Environment topology

2. Environment objects

3. People

4. Loaded plugins and extensions

12.1 Environment topology

Environment data are accessible by the static reference. It returns the Environment’s instance which gives you access
to all of the Environment’s properties

Freedomotic.environment.getPojo();

12.1.1 Returns all the zones in the environment

Freedomotic.environment.getZones()

Zones are logical (virtual) portions of the environment. To retrieve the list of physical environment rooms (rooms are
also considered Zones) use:

Freedomotic.environment.getRooms()

12.1.2 Environmental ‘Things’

The ‘things’ (lights, doors, couches, ...) in the environment can be retrived in different ways:

29

Freedomotic Developer Manual, Release 5.6.0

12.1.3 Get a ‘thing’ by its name

EnvObjectPersistence.getObject(String name)

12.1.4 Get the ‘things’ filtered by protocol and address property

EnvObjectPersistence.getObject(String protocol, String address)

12.1.5 Get the list of the ‘things’ linked to a specific protocol

EnvObjectPersistence.getObjectByProtocol(String protocol)

12.1.6 Get the list of all ‘things’ in the current environment

EnvObjectPersistence.getObjects()

Use the following import to access this method:

import com.freedomotic.objects.EnvObjectPersistence;

12.2 Plugins

12.2.1 Gets the list of loaded plugins

AddonManager.getLoadedPlugins()

Returns an ArrayList of Plugin type.

12.2.2 Get a plugin by name

AddonManager.getPluginByName(String name)

Remember to import com.freedomotic.plugins.AddonManager;

12.2.3 Get plugin configuration from manifest

You can access configuration file of a plugin in this way:

int myVar = configuration.getIntProperty("PROPERTY-NAME", 1);

The second parameter in getIntProperty is the default value to use if the PROPERTY-NAME cannot be found or cannot
be converted to the proper type (int, double, string, ...)

other methods are:

12.2. Plugins 30

Freedomotic Developer Manual, Release 5.6.0

boolean myVar = configuration.getBooleanProperty("PROPERTY-NAME", true);
double myVar = configuration.getDoubleProperty("PROPERTY-NAME", 1.5f);
String myVar = configuration.getStringProperty("PROPERTY-NAME", "some text");

read tuple properties from config file:

boolean myVar = tuple.getBooleanProperty(tupleIndex, "PROPERTY-NAME", true);
double myVar = tuple.getDoubleProperty(tupleIndex, "PROPERTY-NAME", 1.5f);
String myVar = tuple.getStringProperty(tupleIndex, "PROPERTY-NAME", "some text");

12.2.4 Get received command parameters

The onMessage method has a Command c parameter. Is possible to access the received parameters this way:

String saveItInAVariable = c.getProperty("COMMAND-PARAM-NAME");

12.3 Accessing Data Structures from Crosslanguage Plugins

This is done through a REST connection which serves the data. More info can be found at https://github.com/
freedomotic/freedomotic/wiki/Freedomotic-APIs.

12.3. Accessing Data Structures from Crosslanguage Plugins 31

https://github.com/freedomotic/freedomotic/wiki/Freedomotic-APIs
https://github.com/freedomotic/freedomotic/wiki/Freedomotic-APIs

CHAPTER 13

What is a plugin?

Freedomotic is an application extensible through plugins. Plugins are simple classes within a .jar java package. Each
plugin is deployed in the FREEDOMOTIC_ROOT/plugins/ folder, loaded, and initialized automatically at Freedo-
motic startup. The communication between the plugin and Freedomotic is automatically managed, via a Message
Oriented Middleware. Plugins, in addition to the ‘Manager of the messages’, have direct access to Freedomotic data
structures. In a plugin, you can create, read, update, or delete data and use them to accomplish your goals.

13.1 Plugin Features

1. Plugin configuration management

2. User interface accessible by right click in plugins list

3. Simplyfied access to freedomotic data structures

4. Automatic management of plugin lifecycle (loaded, running, stopped,...)

5. Access to the messaging system (read/write events and commands)

6. Installation and upgrade of plugins from a marketplace

7. Simplified programming implementing events (onCommand(), onRun(), onStart, onStop(), ...).

13.2 How to make a non-Java application communicate with Freedo-
motic

Till now we talked about how to extend Freedomotic with Java plugins. However is possible to make non-
Java application communicate with Freedomotic. Take a look at https://github.com/freedomotic/freedomotic/wiki/
Freedomotic-APIs

32

https://github.com/freedomotic/freedomotic/wiki/Freedomotic-APIs
https://github.com/freedomotic/freedomotic/wiki/Freedomotic-APIs

CHAPTER 14

Plugins manifest and configuration

Every plugin needs a XML manifest file to describe its configuration. As multiple plugins can be in the same package
(the one you download from the marketplace) then more than one manifest file can be in the root folder of a plugin
package.

The binding is made in the class constructor with

public MyPlugin() {
super("Hello World Sensor" ,"/firstsensor/first-sensor-manifest.xml");

}

In this example the manifest file is first-sensor-manifest.xml located into firstsensor folder.

The path is case sensitive so /firstsensor/first-sensor-manifest.xml is not the same as /FirstSensor/First-Sensor-
Manifest.xml”.

14.1 What’s inside the manifest

This is an example of the most simple manifest file you can have:

<config>
<properties>

<property name="name" value="Hello World"/>
<property name="description" value="A basic plugin that prints 'Hello World'

→˓on standard output"/>
<property name="category" value="examples"/>
<property name="short-name" value="hello-world"/>

</properties>
</config>

Note: The manifest file is the ONLY place where you should add configuration parameters for your plugin. You
should not use external files if not strictly needed (e.g. by third party libraries).

33

Freedomotic Developer Manual, Release 5.6.0

You can add custom properties to this list. The properties can be retrieved programmatically this way:

int ServerPort = configuration.getIntProperty("udp-server-port", 7331); //defaults to
→˓7331 if the property is not found in the manifest
String Delimiter = configuration.getStringProperty("delimiter", ":"); //defaults to ':
→˓' if the property in not found in the manifest

14.2 Add configuration blocks to your plugin

If you have to configure multiple the same set of properties for different things (eg: URL and port of a set of hardware
boards) you can use tuples.

You can add as many <tuple></tuple> blocks as you need. The <tuples></tuples> block may be added
after <properties></properties> on the same hierarchical level.

Tuples are useful to have configuration data specific for you plugin to be loaded in Freedomotic at startup.

<tuples>
<tuple>

<property name="Name" value="TemperatureZone1"/>
<property name="SlaveId" value="1"/>
<property name="RegisterRange" value="HOLDING_REGISTER"/>
<property name="DataType" value="TWO_BYTE_INT_UNSIGNED"/>
<property name="Offset" value="266"/>
<property name="NumberOfRegisters" value="1"/>
<property name="Multiplier" value="0.1d"/>
<property name="Additive" value="0.0d"/>
<property name="EventName" value="TemperatureZone1"/>

</tuple>
<tuple>

<property name="Name" value="TemperatureZone2"/>
<property name="SlaveId" value="1"/>
<property name="RegisterRange" value="HOLDING_REGISTER"/>
<property name="DataType" value="TWO_BYTE_INT_UNSIGNED"/>
<property name="Offset" value="522"/>
<property name="NumberOfRegisters" value="1"/>
<property name="Multiplier" value="0.1d"/>
<property name="Additive" value="0.0d"/>
<property name="EventName" value="TemperatureZone2"/>

</tuple>
</tuples>

You can use free custom strings for the attribute name and the value.

14.3 Messaging channel

Every plugin has an unique input messaging channel used for message exchange. It is addressed using the info you
put in the manifest file.

For plugins the channel name has the following format app.actuators.CATEGORY.SHORT-NAME.in.

14.2. Add configuration blocks to your plugin 34

CHAPTER 15

Create a new plugin

15.1 From template

1. Copy and paste the hello-world example you can find in GIT_FOLDER/plugins/devices/hello-world. Open this
project along with freedomotic-core in your favourite IDE and make your changes. Any time you compile the
plugin will be installed into freedomotic-core folder, so you can simply start it to see your plugin running.

2. Implement the HelloWorld.java class methods and rename the class and the path to manifest in the class Con-
structor according to the new name of your plugin.

3. Compile the plugin and start Freedomotic to test it.

4. Add commands, triggers and resources in the src/main/resources/data/ folder of this plugin (take a look at the
folder diagram above)

15.2 From an archetype

Archetypes can help you to make the development of new plugins easier starting from a well-defined template. More
info on http://maven.apache.org/guides/introduction/introduction-to-archetypes.html

The archetype should be compiled with

mvn clean install

and added to the local list of archetypes with

mvn archetype:crawl

Now localhost is ready to create projects using this archetype

cd freedomotic/plugins/devices
mvn archetype:generate -Dfilter=com.freedomotic:device -DgroupId=com.freedomotic -
→˓Dversion=1.0-SNAPSHOT -Dpackage=com.freedomotic

35

https://github.com/freedomotic/freedomotic/wiki/Plugin-manifest-and-configuration
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Freedomotic Developer Manual, Release 5.6.0

Add your plugin name when asked and confirm. The plugin skeleton is now created so compile it with:

cd PLUGIN_NAME
mvn clean install

At this point the new plugin is installed in Freedomotic as usual, the developer can start to code it.

Please remember to rename the default Java class HelloWorld as your plugin name.

15.3 Behind the scene

If you want to understand how the archetype works take a look here.

TODO Update maven archetype code to match latest freedomotic version and best practices

15.4 Plugin folder structure

frontend-java/
- pom.xml //THE MAVEN POM FILE
- src

- main
| - java
| | - com
| | - freedomotic
| | - jfrontend
| | - JavaDesktopFrontend.java //THE PLUGIN SOURCE CODE
| - resources
| - data (PLUGIN DATA FOLDER)
| | - i18n
| | - jfrontend_it_IT.properties //ITALIAN TRANSLATION
| | - jfrontend.properties //DEFAULT LANGUAGE
| | - cmd //PLUGINS COMMANDS XML FILES
| | - rea //PLUGINS REACTIONS/AUTOMATIONS XML FILES
| | - templates //OBJECTS TEMPLATES PROVIDED BY THIS PLUGIN
| | - trg //PLUGINS TRIGGERS XML FILES
| | - resources //PLUGINS MEDIA FILES
| - desktop-frontend.xml //THE PLUGIN MANIFEST
- test

- java
- com

- freedomotic
- jfrontend

- JavaDesktopFrontendTest.java //UNIT TESTS FILE

15.3. Behind the scene 36

https://github.com/freedomotic/freedomotic/tree/master/tools/freedomotic-device-maven-archetype
https://github.com/freedomotic/freedomotic/issues/150

CHAPTER 16

Plugin lifecycle

Fig. 16.1: Lifecycle of a plugin, showing both polling and push modes of operation (thanks to J.M. Fidalgo)

37

CHAPTER 17

Bind things state to hardware data

To integrate new building automation protocols, (eg: zwave, zigbee, ...) you can create a dedicated plugin.

This plugin acts as a “translator” from Freedomotic generic commands to protocol specific commands, and vice versa.

17.1 Read data from hardware

Your plugin will read data from the protocol and translate it into Freedomotic events to be notified to the framework.
The event you want to notify is usually a ProtocolRead event; take a look at how to listen and notify events tutorial.

To bind an event to a change of the status of a specific object on the Freedomotic environment map, you have two
ALTERNATIVE choices:

17.2 Specify the new object state in the notified event

High level communication protocols usually know if the read value is a temperature, a binary state (true/false) or
another kind of value.

In this case you can specify the object state directly in the notified event as following:

//protocol name= zwave, address=3
ProtocolRead event = new ProtocolRead(this, "zwave", "3");
//set the object state to powered=true
event.getPayload().addStatement("behavior.name", "powered");
event.getPayload.addStatement("behaviorValue", "true");
// (OPTIONAL) specify a Freedomotic object class and name for the autodiscovery
→˓feature
event.getPayload.addStatement("object.class", "Light");
event.getPayload.addStatement("object.name", "A Light");
//send the event to Freedomotic
notifyEvent(event);

38

/javadoc/it/freedomotic/events/ProtocolRead.html

Freedomotic Developer Manual, Release 5.6.0

The drawback is that your plugin is now bound to this specific object implementation, so it will work only with objects
that have a behavior called “powered” which accepts true/false values (BooleanBehaviour class).

To avoid binding your plugin to a specific object implementation you can just notify the raw read hardware value and
convert it into a valid behavior value using a hardware trigger (data source).

17.3 Create a hardware trigger to be configured as “Data source”

You would choose this option if your communication protocol doesn’t know the object type. For example, a relay
board just knows if a relay is on or off but not if the wired object is a lamp or a coffee machine. It simply notifies a
hardware read value.

The interpretation of the raw read value is done at configuration time, because only the configurator knows what is
really connected to the relay board. This simply means that to bind an object state (eg: powered=true) to a specific
trigger, then you (as developer) must provide one along with your plugin.

For example if you are developing an Arduino based plugin you can define a data source trigger called Arduino
Relay Board: read value 1 in first relay line. The mapping between the object state and your
plugin trigger will make the object to become “powered” when the first relay of the Arduino board is switched on.

As a note, the object settings can be changed from JFrontend by right clicking on an object on the map (Data source
tab).

17.4 Write data to hardware

Freedomotic can request something like this to your plugin turn on relay 1 on board at 192.168.1.
100.

Assuming the board communication protocol is HTTP based, the plugin should translate this into a proper HTTP
request to the IP the hardware board is listening.

Your plugin will receive this generic command in the onCommand() method of your plugin and here you would
parse the command parameters with

c.getProperties().getIntProperty("propertyName", defaultValue)

and create the corresponding protocol specific request.

To know which variables are available to your plugin to perform its tasks take a look at the section Properties received
by a driver plugin

17.3. Create a hardware trigger to be configured as “Data source” 39

CHAPTER 18

Bind things state to web services

18.1 Parse data from the Webservice

Here, you will probably need to request a specific URL content using a GET request. Then you will need to parse
the received result, which is probably in JSON or XML. Take a look at http://stackoverflow.com/questions/4216455/
get-page-content-from-url

All of this will be implemented in the onRun() method of your plugin.

This method is already threaded so there is no need to create additional execution threads. It can be executed just
one time or in a loop with some delay between the calls. To do this, just call this method in your plugin constructor:

setPollingWait(2000);

This way the onRun() method is executed in a dedicated thread every 2 seconds. To disable the loop execution, just
set it with a negative value:

setPollingWait(-1);

18.2 Send a Freedomotic event

We want it to the read temperature value for London using Weather Underground’s APIs.

This event changes the temperature value of a thing on the map configured with protocol “weather-underground”
and address “london”. The temperature value is stored into a java variable “londonTemperature”.

18.2.1 1. Specify the new state of the targeted thing in the notified event

//This value should be read from weather underground APIs in a real use case
int londonTemperature=21;

40

http://stackoverflow.com/questions/4216455/get-page-content-from-url
http://stackoverflow.com/questions/4216455/get-page-content-from-url

Freedomotic Developer Manual, Release 5.6.0

//Change the 'London Thermometer' object value
ProtocolRead event = new ProtocolRead(this, "weather-underground", "london");
//specify a freedomotic object type and name for the autodiscovery feature
event.addProperty("object.class", "Thermometer");
event.addProperty("object.name", "London Thermometer");
//set the 'temperature' behavior of 'LondonThermometer' object to 21
event.addProperty("behavior.name", "temperature");
event.addProperty("behaviorValue", londonTemperature);
//send the event to freedomotic
notifyEvent(event);

18.2.2 2. Create an event to be listened by triggers

If you just want to notify an event which is not directly related to the object’s states, it can be done in the following
way: Events are published by plugins on messaging channels. A series of useful events is predefined in Freedomotic
but you can create your own or simply use the GenericEvent class.

Every action in the real environment and every interaction with Freedomotic (eg: a click on the GUI) is mapped to
an event. Events can be intercepted by triggers, and you can assign one or more commands to a trigger, changing the
behavior of the system at runtime.

18.2.3 How to notify a generic event

GenericEvent knowItAll = new GenericEvent(this);
//42 is the answer to the Ultimate Question of Life, the Universe, and Everything
//http://en.wikipedia.org/wiki/Answer_to_Life,_the_Universe,_and_Everything
event.addProperty("ultimate.question.answer", 42);
//set a channel on which this event should be sent
event.setDestination("app.event.sensor.deepthought");
//sends the event on the messaging bus
notifyEvent(event);

Now a trigger can listen to app.event.sensor.deepthought this way

<trigger>
<name>You know the right answer to Life</name>
<channel>app.event.sensor.deepthought</channel>
<payload>

<payload>
<statement>

<logical>AND</logical>
<attribute>ultimate.question.answer</attribute>
<operand>EQUAL</operand>
<value>42</value>

</statement>
</payload>

</payload>
</trigger>

and then you can create automations like WHEN [You know the right answer to Life] THEN [send
me an email]

Besides the all purpose GenericEvent, some useful events are predefined in freedomotic. Look at this list http:
//freedomotic.com/javadoc/it/freedomotic/events/package-frame.html

18.2. Send a Freedomotic event 41

http://freedomotic.com/javadoc/it/freedomotic/events/package-frame.html
http://freedomotic.com/javadoc/it/freedomotic/events/package-frame.html

Freedomotic Developer Manual, Release 5.6.0

Note: If your plugin’s main purpose is to change the state of an object on the map (eg: set thermometer object value
to the value read from Google Weather) then you should follow option 1.

18.2.4 More information about triggers

A trigger can listen on an events channel and filter the event content. If your event notifies about the outdoor tem-
perature, then you can have a trigger called Outside is cold which fires if temperature is less than
10°C. You should provide this trigger along with your plugin in its data/trg folder. To know more about triggers
definition take a look at this page /content/triggers.

18.2.5 An example: Get weather underground temperature data

TODO

18.2. Send a Freedomotic event 42

/content/triggers

CHAPTER 19

Handle plugin errors

When a plugin throws an exception, the related end user messaging can be handled automatically, for example setting
the plugin description accordingly and stopping the plugin itself.

Here is an example of correct exception handling in onRun()

@Override
public void onStart() throws PluginStartupException {

try {
// This code may generate a SerialPortException if there are connection

→˓problems
serial = new SerialHelper(PORTNAME, BAUDRATE, DATABITS, STOPBITS, PARITY,

→˓new SerialPortListener() {
@Override
public void onDataAvailable(String data) {
LOG.info("MySensors received: " + data);
sendChanges(data);

}
});

serial.setChunkTerminator("\n");
} catch (SerialPortException ex) {

throw new PluginStartupException("Error while connecting to serial device",
→˓ex);

}
}

• onStart() throws PluginStartupException

• onRun() throws PluginRuntimeException

• onStop() throws PluginShutdownException

After catching the exception Freedomotic will:

1. print the error message on the GUI

2. change the plugin description using the exception message

43

Freedomotic Developer Manual, Release 5.6.0

3. log the exception

4. stop the plugin if it is a PluginRuntimeException

44

CHAPTER 20

Listen to Events programmatically

First you have to add a listener for each channel you want to listen to. In the onStart() method of your plugin add for
example:

addEventListener("app.event.sensor.object.behavior.change");
addEventListener("app.event.sensor.environment.zone.change");
addEventListener("app.event.sensor.plugin.change");

if you want intercept all events about changing in sensors behaviors, zones or plugins.

Then modify the onEvent(EventTemplate event) method

protected void onEvent(EventTemplate event) {
if (event instanceof ObjectHasChangedBehavior) {

// here what you want todo
} else if (event instanceof ZoneHasChanged) {

// here what you want todo
}

}

Here a complete example.

45

https://github.com/freedomotic/freedomotic/blob/master/plugins/devices/restapi-v3/src/main/java/com/freedomotic/plugins/devices/restapiv3/RestAPIv3.java

CHAPTER 21

Auto discover and auto configure things

This feature is used to allow hardware plugins to create things automatically and place them on the already configured
environment map just like an auto discovering system. The things will be created and added to the loaded environment
the first time their state changes.

21.1 How to enable auto discovering in your plugin

Suppose you have some bulbs connected to a relay board. The first time you turn on one of them, Freedomotic
generates a new light object and adds it to the map.

In order to do this you only need to send a state change notification for a thing. If the thing doesn’t exist(checking is
done on protocol+address values in the event), it is generated, configured and placed on the frontend map.

All the following examples are based on an X10 plugin, demonstrating the change in state from OFF to ON of the x10
device with address A01. Remember to change the values according to your needs.

ProtocolRead event = new ProtocolRead(this, "X10", "A01");
event.addProperty("x10.function", "ON"); // this is plugin related; your plugin will
→˓have different properties
event.addProperty("object.class", "Light");
event.addProperty("object.name", "My X10 Light");
event.addProperty("object.protocol", "X10");
event.addProperty("object.address", "A01");
notifyEvent(event);

More information about these properties:

46

Freedomotic Developer Manual, Release 5.6.0

Prop-
erty

Exam-
ple
Value

Description

ob-
ject.class

Light The type of the thing that will be created. It must be a string containing a thing type as
you see in the things list menu of java frontend (when you press F6)

ob-
ject.name

My Light The name of the new thing. If the name already exists, a numeric ID will be added at the
end of the name. For example: My Light 1

ob-
ject.protocol

Protocol-
Name

(OPTIONAL) The name of the protocol used to manage this thing (eg: ZWave)

ob-
ject.address

1234 (OPTIONAL) The address string (it is protocol dependent)

Note: Omitting object.class and object.name properties makes the ProtocolRead event to be discarded if no such
thing exists. If thing exists the state change described in the event is applied.

21.1. How to enable auto discovering in your plugin 47

CHAPTER 22

Internationalization

Plugins usually let the user interact with Freedomotic, e.g. by showing dialog boxes, logging messages and so on. I’d
be advisable to let plugin use the user’s language in order to make them much usable and understendable. If you’re a
developer and want to add your plugin the capability to ‘speak’ different languages, just follow this simple guide to
adapt your code.

22.1 Adding internationalization support

Freedomotic ships a mechanism for easily support localized strings and allows the developer to use a prebuild bag of
general purpose strings. Moreover the developer could add custom messages on his/her own.

First of all we need to access to API so let’s add the following code

private API api;
private I18n i18n;

api = getApi();
i18n = api.getI18n();

The static function to use in place of your ‘unlocalized’ string is i18n.msg(_STRING_KEY_).

Here a quick example

// old code (non localized)
LOG.info("Hello");
// new code (localized)
LOG.info(i18n.msg("greeting"));

In the plugin manifest file you have to add the property <property name="enable-i18n" value="true"/
>.

48

Freedomotic Developer Manual, Release 5.6.0

22.2 Behind the scenes - what happens when calling i18n.msg()?

Freedomotic reads some system config to automatically guess user locale it searches proper localization string inside
/i18n/<Freedomotic locale>.properties.

If the current locale is not defined (translation doesn’t exist) en_UK is used and Freedomotic.properties file is loaded.

22.3 Making custom plugin translations

If global translation strings aren’t enough plugin developer could write custom strings and save them using the follow-
ing path starting from plugin base folder

/i18n/<package-name>.properties\ for en_UK

or

/<plugin_package_name>/i18n/<package_last_part>-<locale>.properties

e.g.

/jfrontend/i18n/jfrontend.properties

/jfrontend/i18n/jfrontend-es_ES.properties

22.4 Accessing custom plugin translations

Just pass the current object as a parameter to i18n.msg()

LOG.info("Plugin " + i18n.msg(this,"plug_name"));

22.5 Composing strings

Consider the following example: we want to translate “save environment as”, “save object as”, “save room as” and
so on. The translation file looks like this

Key string Default translation it_IT localization
save_as Save as Salva come
environment Environment Ambiente

using a concatenation of strings i18n.msg("save_as") + i18n.msg("environment"); doesn’t work
and it’ll result in “save as environment” ...

We can then use basic Java string format like that

Key string Default translation it_IT localization
save_as Save {0} as... Salva {0} come...
environment Environment Ambiente

i18n.msg("save_as",new Object[]{i18n.msg(environment)});

So the second variable is given as replacement for placeholder {0}.

This applies to many placeholders, not only one.

22.2. Behind the scenes - what happens when calling i18n.msg()? 49

CHAPTER 23

Plugin samples

Take a look at the source code of these plugins to get inspiration

• SNMP Communication A plugin to interact with SNMP (Simple Network Management Protocol) enabled de-
vices

• FTDI Communication

• UDP Communication Sending UDP packages to Open Picus devices

• I2C Communication

• MQTT Communication A MQTT client

50

https://github.com/freedomotic/freedomotic/tree/master/plugins/devices/hwg-ste
https://github.com/freedomotic/freedomotic/tree/master/plugins/devices/usb4relaybrd
https://github.com/freedomotic/freedomotic/tree/master/plugins/devices/openpicus-grove-system
https://github.com/freedomotic/freedomotic/tree/master/plugins/devices/i2c
https://github.com/freedomotic/freedomotic/tree/master/plugins/devices/mqtt-client

CHAPTER 24

What is a thing?

The base class representing a thing is EnvObject. This class describes the main characteristics of a thing in the
environment: identification, representations, behaviors and the ways it can interact with the environment (other things
or users).

Things are stored in the application through the serialization of this class.

The class EnvObjectLogic incorporates EnvObject as a field, providing several methods to perform operations on it.
This class serves as a template for the creation of objects.

Object behaviors (the properties you want to monitor or control) are defined as implementations of the interface
BehaviorLogic.

Initially, depending on a template, objects can be considered virtual or not (it they have an attachment to a data source
- a plugin). In order to establish correspondence with physical devices, an object must be marked as not virtual and a
protocol and an address must be defined.

The protocol just indicates the plugin being used, while the address provides data specific to the protocol (for example
the IP address of a network device or a web service or a board port).

These classes already provide representations of things on user interfaces, even allowing interaction with them.

Interaction with physical objects or web services is accomplished using plugins that translate generic data/commands
from Freedomotic to the specific counterpart used in those devices/services and vice versa.

51

CHAPTER 25

Create new thing types

To develop a new object type, you have to create a Java extension which describes the actions that the new objects can
perform.

After that your object can be instantiated by writing a XML file that describes the value of an instance of the object
model you have implemented in Java.

To create the Java object model, you have to list the object properties and the values it can take. This is done by
adding predefined listeners (called behaviors) to your object.

For example, a light can be turned on, turned off, and dimmed. So it has a behavior called powered that can be true
or false, and a behavior called brightness that can assume integer values from 0 to 100.

A behavior is an instance of predefined classes. For example, the behavior powered is an instance of BooleanBehav-
ior.java while brightness is an instance of RangedIntBehavior.java.

A behavior listens to change requests of its values, parses the request (for example, a sensor notifies that a light
brightness has changed) and performs the defined operation for this situation.

The design pattern underneath is the same as a Java listener used for a Swing button. An example can be more clear.
This is the definition of the brightness property of a light object

//linking this property with the behavior defined in the XML
//it takes the max, min and step values from the object definition file.

brightness = (RangedIntBehavior) getBehavior("brightness");
brightness.addListener(new RangedIntBehaviorListener() {

@Override
public void onLowerBoundValue(Config params) {
//here you can add the code to execute if the brightness changes to the
//lowest value possible. Eg: brightness equals to zero means the

//light must be turned off.
turnPowerOff(params);

}
@Override
public void onUpperBoundValue(Config params) {
//here you can add the code to execute if the brightness changes to the
//highest value possible. Eg: brightness equals 100 means the

52

https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-model/src/main/java/com/freedomotic/model/object/BooleanBehavior.java
https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-model/src/main/java/com/freedomotic/model/object/BooleanBehavior.java
https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-model/src/main/java/com/freedomotic/model/object/RangedIntBehavior.java

Freedomotic Developer Manual, Release 5.6.0

//light must be set to on and not dimmed.
turnPowerOn(params);
}

@Override
public void onRangeValue(int rangeValue, Config params) {
//here you can add the code to execute if the brightness changes to
//a value inside the min-max range. Eg: brightness equals 45 means
//the object must change its brightness value to 45.
setBrightness(rangeValue, params);
}

});

the setBrightness() method will look like this

public void setBrightness(int rangeValue, Config params) {
//executes the developer level command associated with
//'set brightness' action defined in the object definition file.
//the parameter 'params' has the data for the correct execution of the action.
boolean executed = execute("set brightness", params);
if (executed) {

powered.setValue(true); //if dimmed, the light is on
brightness.setValue(rangeValue);
//set the light graphical representation
setView(1); //points to the second element in the XML views array, the

→˓"light on" image.
setChanged(true);

}
}

25.1 Predefined behaviors

Here is a list of ready to use behaviors to instantiate as object properties:

Behavior
Name

Listenable values changes Example of use

RangedIntBe-
havior

onLowerBoundValue; onUpperBoundValue;
onMiddleValue

Can be used to model a property like volume
of a TV object

BooleanBe-
havior

onTrue; onFalse Can be used to model the muted behavior of a
TV object

25.2 Load the object as a plugin

As for any plugin the code must be compiled and its jar file must be deployed in the FREEDO-
MOTIC_ROOT/plugins/objects/OBJECT_NAME_FOLDER. As Freedomotic starts up, it loads all the objects inside
the FREEDOMOTIC_ROOT/plugins/objects/ subfolders irrespective of their names. Objects don’t require a XML
configuration file.

25.3 Create instances of your new object type

When it receives a specific input, Freedomotic knows how this type of object will execute. You will have to provide
one or more .xobj files that describe the instances of your object type. For example, you have the light definitions but

25.1. Predefined behaviors 53

Freedomotic Developer Manual, Release 5.6.0

you you need to add to the environment a light called ‘kitchen light’ and another one called ‘living room light’. This
is done through .xobj definition.

TODO: explain how to create a xobj object

• An example of Java class for a light object

• An xobj instance

• For a more challenging object take a look at TV object

• and its *xobj* instance

25.3.1 How to create the XML object

TODO: add a general description

25.3.2 Common properties section

Field Values Description Re-
quired

name String The name of the object YES
descrip-
tion

String A brief description of your object (up to 100 char) YES

actAs NOT YET IMPLEMENTED NO
type EnvOb-

ject.ElectricDevice.Light
Dot notation of the object hierarchy in Freedomotic. It is a free form
string you can use to identify

YES

protocol String Depends on the controller protocol eg: X10, Modbus,... Refer to the
controller guide. Can be changed from the frontend at runtime.

YES

phisy-
calAd-
dress

String Depends on the controller protocol eg: X10, Modbus,... Refer to the
controller guide. Can be changed from the frontend at runtime.

YES

25.3.3 Behaviors section

In this section the object’s behaviors are configured. Each behavior name must have the same name that is used inside
the object code. To facilitate the object’s configuration an object developer should expose all names that is using inside
the code. The names are case sensitive.

25.4 Boolean behavior

Used to describe a property that can have only two values: true or false. For example, the property powered of an
electric device such a light.

Field Values Description Required
name eg: powered, muted, ... the name of the boolean behavior YES
description String A string to describe the behavior purpose NO
value Boolean The startup value of the behavior YES
active Boolean This behavior is valid on startup? If in doubt use “true” YES
priority NOT YET IMPLEMENTED NO

25.4. Boolean behavior 54

https://github.com/freedomotic/freedomotic/blob/master/plugins/objects/base-things/src/main/java/com/freedomotic/things/impl/Light.java
https://github.com/freedomotic/freedomotic/blob/master/plugins/objects/base-things/src/main/resources/data/templates/light.xobj
https://github.com/freedomotic/freedomotic/blob/master/plugins/objects/tv/src/main/java/com/freedomotic/objects/impl/TV.java
https://github.com/freedomotic/freedomotic/blob/master/plugins/objects/tv/src/main/resources/data/templates/Tv.xobj

Freedomotic Developer Manual, Release 5.6.0

25.5 Ranged int behavior

A behavior used to model a property that can have a ranged set of integer values. For example, from zero to hundred
or the volume property of a TV object.

Field Values Description Re-
quired

name eg: powered, muted,
...

The name of the boolean behavior YES

descrip-
tion

String A string to describe the behavior purpose NO

value Boolean The startup value of the behavior YES
max Integer The upper value that can be assumed. Eg: 100 YES
min Integer The lower value that can be assumed. Eg: 0 YES
step Integer The step used to go to the next or previous value from the

current one.
YES

active Boolean This behavior is valid on startup? If in doubt use “true” YES
priority NOT YET IMPLEMENTED NO

25.6 Exclusive multivalue behavior

This behavior represents an object feature that only takes values from a predefined list. For example, the input property
of a TV object can only take values like INPUT1, INPUT2, SATELLITE, etc...

Field Values Description Required
name eg: powered, muted, ... The name of the boolean behavior YES
description String A string to describe the behavior purpose NO
active Boolean This behavior is valid on startup? If in doubt use “true” YES
priority NOT YET IMPLEMENTED NO
selected Integer The default selected item YES
list List The list of items. Each of them has the format item_value YES

25.7 Views section

Each view corresponds to a visual representation of the object that can be shown using the object code. The position
of the view on the list corresponds to the same number that is used in the code.

25.5. Ranged int behavior 55

Freedomotic Developer Manual, Release 5.6.0

Field Values Description
tangible Boolean The object is a physical object or not
intersecable Boolean A person or shape can intersect this object
width Integer The width of the object
height Integer The height of the object
x Integer Its x position starting from 0,0 (the upper left corner) of the environment
y Integer Its y position starting from 0,0 (the upper left corner) of the environment
rotation Integer The rotation using the upper left corner of the object as pivot point
fillcolor / red Integer The color that fills the geometrical shape of the object
fillcolor / green Integer The color that fills the geometrical shape of the object
fillcolor / blue Integer The color that fills the geometrical shape of the object
fillcolor / alpha Integer The color that fills the geometrical shape of the object
textColor / red Integer The color of the text that describes the object
textColor / green Integer The color of the text that describes the object
textColor / blue Integer The color of the text that describes the object
textColor / alpha Integer The color of the text that describes the object
borderColor / red Integer The color of the shape border
borderColor / green Integer The color of the shape border
borderColor / blue Integer The color of the shape border
borderColor / alpha Integer The color of the shape border
shape/npoints Integer Number of points used to describe the shape
shape/xpoints Integer Ordered list of x coordinates of the points
shape/ypoints Integer Ordered list of y coordinates of the points
icon String The name of the icon in the resource folder (path can be omitted)

25.8 Actions section

The actions represent the tasks that can be performed by an object. These actions must be associated with the hardware
command that has to be executed when the action is launched. As with the behavior, the name of each action must
match the ones used in the object code. Also, the command value should match the name of an existing command
(normally a hardware command created by the hardware plugin developer).

Field Values Description
name String The name of the action already defined in the object code
value String The name of the command

25.8. Actions section 56

CHAPTER 26

Add new thing templates

This feature is used to allow device plugins to create fully customized objects using auto discovery feature. The object
can come with the right mapping in Data sources/Actions or you can even change its representation (eg: a light with
a custom icon).

To test it

1. Create a src/main/resources/data/templates folder inside a device plugin (eg: essential)

2. Copy the light.xobj object from base-things plugin in this new folder

3. Change the name of this file to mytemplate.xobj and change xml name tag to <name>My Test Template</
name>

4. Recompile essential plugin to have these changes installed in freedomotic-core

5. Run freedomotic-core.

In Jfrontend enter Objects Edit mode and you should see a new template in the list called My Test Template which
is provided by a device plugin instead of an object plugin.

Try to add it to the map as usual and check if the new light turns on when clicked.

57

CHAPTER 27

Events

Freedomotic and its plugins send events when anything relevant happens.

Any event is sent on a messaging channel. A channel address is a simple string with a hierarchical structure like
app.sensors.event.object.behavior.changed.

You can subscribe an event channel from a trigger which is a filter of events.

For example if your event is an object changed state you can filter it using a trigger if a light in
the kitchen changed its powered state.

Freedomotic events have a set of standard properties plus a list of properties related to the specific event.

27.1 Generic event properties

The following properties are common to all events and can be intercepted and filtered by any trigger:

PROPERTY POSSIBLE VALUES DESCRIPTION
date.dayname eg: Sunday English name of the day in which the event is throwed
date.day eg: 4 for Thursday The day number in which the event is throwed
date.month eg: October The month name in which the event is throwed
date.year eg: 2016 The year number in which the event is throwed
time.hour eg: 0-23 The hour number in 24h format in which the event is throwed
time.minute eg: 0-59 The minute of the current hour in which the event is throwed
time.second eg: 0-59 The second of the current minute in which the event is throwed
sender The name of the module that have generated the event

27.2 Predefined events

Here a list of predefined events:

58

Freedomotic Developer Manual, Release 5.6.0

EVENT CHANNEL DESCRIPTION
AccountEvent app.event.sensor.account.change Account status changed
GenericEvent app.event.sensor Generic event. Use ONLY if there is not a

specific event
LocationEvent app.event.sensor.person.movement.detected Person position detected
LuminosityEvent app.event.sensor.luminosity Luminosity changed
MessageEvent app.event.sensor.messages.MESSAGE_TYPEMessage notified
ObjectHasChanged-
Behavior

app.event.sensor.object.behavior.change Object behavior changed

ObjectReceiveClick app.event.sensor.object.behavior.clicked Object clicked
PersonEntersZone app.event.sensor.person.zone.enter Person enters a zone
PersonExitsZone app.event.sensor.person.zone.exit Person exits a zone
PluginHasChanged app.event.sensor.plugin.change Plugin status changed
ProtocolRead app.event.sensor.protocol.read.PROTOCOL_NAMEProtocol read
ScheduledEvent app.event.sensor.calendar.event.schedule Time related event
TemperatureEvent app.event.sensor.temperature Temperature changed
ZoneHasChanged app.event.sensor.environment.zone.change Zone changed

27.3 More info in Javadoc

For event specific data please refer to the Javadocs of the event classes https://freedomotic.github.io/javadoc/
freedomotic-core/com/freedomotic/events/package-summary.html

For example this is the list of properties available to a trigger that listen to ObjectReceiveClick events

• date.day.name EQUALS Thursday

• date.day EQUALS 4

• date.month.name EQUALS October

• date.month EQUALS 10

• date.year EQUALS 2012

• time.hour EQUALS 18

• time.minute EQUALS 15

• time.second EQUALS 15

• sender EQUALS UnknownSender

• click EQUALS SINGLE_CLICK

• object.type EQUALS EnvObject.ElectricDevice.Light

• object.name EQUALS Light one

• object.protocol EQUALS X10

• object.address EQUALS A01

27.3. More info in Javadoc 59

https://freedomotic.github.io/javadoc/freedomotic-core/com/freedomotic/events/package-summary.html
https://freedomotic.github.io/javadoc/freedomotic-core/com/freedomotic/events/package-summary.html

CHAPTER 28

Triggers

A trigger is a filter that permits to intercept an event on a channel.

It performs check on the event carrying values and tags and assigning a meaningful and reusable name to this restric-
tion.

For example, an event can be the notification of time for example 10 o’Clock; a trigger can respond to time events.
Suppose if the time is between 7 and 13 o’clock, you can name this trigger it's morning and reuse it to perform
reactions like IF it's morning THEN turn off outdoor lights.

Therefore a trigger can be used to decide whether a notified event has to be processed or not. Whenever an event is
processed by a trigger, if the trigger is consistent with its definition, then the associated commands are executed.

A reaction represents a link between a trigger and one or more commands list executed by an actuator.

In this brief tutorial the manual creation of an XML trigger is explained, however the end user can define triggers using
the included graphical editor, so there is no need to edit the XML manually.

28.1 How to filter events using triggers

Events can be intercepted using triggers. each event has a default channel on which it is notified.

To know which is the default channel of a particular event see listenable events page (TODO ADD A LINK). To
capture the event you just create a trigger that is listening to the same channel. For example, the PersonMoving event
is published on the channel app.event.sensor.person.movement.moving.

To intercept a person’s movement you can define a trigger listening to channel app.event.sensor.person.
movement.moving.

28.2 How to filter received event parameters

As said before a trigger is an event filter. It can read event parameters and filter them according to the rules defined in
it. Every rule is called statement. A statement is composed of a logical value, an attribute name, an operand and a

60

Freedomotic Developer Manual, Release 5.6.0

value.

The action tag can be used to listen on the default channel of a specif event. You have to insert the complete path
of the Java class that implements the event. Otherwise, you can specify the channel with a custom string inside the
<channel> </channel> tag.

• logical: is used to concatenate a statement with the previous statement. The default value is AND, means that
the following rule is in logical AND with the previous. At this time only the AND logical value is implemented.

• attribute: it’s the name of the event property to filter. To know which properties are carried by an event, you
have to refer to the event page.

• operand: can be EQUALS, REGEX, GREATER_THAN, LESS_THAN, GREATER_EQUAL_THAN,
LESS_EQUAL_THAN, BETWEEN_TIME. It’s used to relate the attribute with the value.

• value: can be a string or an integer value. You can use the ANY key to match any value.

28.3 Max execution limit and flood control

Every trigger has a max-executions parameter which defines how many times this trigger can fire. This counter is
reset at Freedomotic startup. If the value is -1 this trigger has no max executions limit.

Another property if suspension-time which defines for how many milliseconds this trigger is disabled after firing. The
trigger cannot fire again until its suspension time is finished. Every trigger has a standard suspension time of 100ms
which can be overwritten if needed setting a lower value.

28.4 Listening to Channels with wildcard paths

This feature is applicable only if you insert the custom channel path as a string in the [code] [/code] tag.

For example if a sensor generates events on channel app.events.sensors.moving.person.P003 a trigger
can listen to this particular event to receive details about person P003’s movements.

Otherwise if the trigger listens to app.events.sensors.moving.person. it will receive information about
the movement of all people detected in the environment.

The wildcard semantic is as follows:

• period (.) is used to separate names in a path

• asterisk (*) is used to match any name in a path

• greater than sign (>) is used to recursively match any destination starting from this name

28.5 Trigger scripting

TODO ADD EXAMPLES TAKEN FROM

https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-core/src/test/java/com/freedomotic/
core/ResolverTest.java

28.3. Max execution limit and flood control 61

https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-core/src/test/java/com/freedomotic/core/ResolverTest.java
https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-core/src/test/java/com/freedomotic/core/ResolverTest.java

Freedomotic Developer Manual, Release 5.6.0

28.6 Deploy a trigger

Triggers are deployed in the FREEDOMOTIC_ROOT/data/trg folder. They are files with .xtrg extension and are
loaded at Freedomotic startup.

In the console you can have a view of the loaded triggers and the channel on which they are listening.

28.7 Examples

28.7.1 Check if a thing name in the event is ‘Kitchen Light’

<statement>
<logical>AND</logical>
<attribute>object.name</attribute>
<operand>EQUALS</operand>
<value>Kitchen Light</value>

</statement>

28.7.2 Check if the thing type in the event is an electric device

<statement>
<logical>AND</logical>
<attribute>object.type</attribute>
<operand>REGEX</operand>
<value>^EnvObject.ElectricDevice\.(.*)</value>

</statement>

28.7.3 Check if the temperature in the event is strictly greater than 20°C

<statement>
<logical>AND</logical>
<attribute>@event.temperature</attribute>
<operand>GREATER_THAN</operand>
<value>20</value>

</statement>

28.7.4 Check if the given time (format: HH:mm:ss) is between the specified time
interval (format: HH:mm:ss-HH:mm:ss)

<statement>
<logical>AND</logical>
<attribute>time.current</attribute>
<operand>TIME_BETWEEN</operand>
<value>23:00:00-8:30:00</value>

</statement>

28.6. Deploy a trigger 62

Freedomotic Developer Manual, Release 5.6.0

28.7.5 Check is someone exits from kitchen

<trigger>
<name>Someone Exits from Kitchen</name>
<description>When someone exits from kitchen area</description>
<channel>app.event.person.zone</channel>
<payload>

<payload>
<statement>

<logical>AND</logical>
<attribute>zone</attribute>
<operand>EQUAL</operand>
<value>Kitchen</value>

</statement>
<statement>

<logical>AND</logical>
<attribute>person</attribute>
<operand>EQUAL</operand>
<value>ANY</value>

</statement>
<statement>

<logical>AND</logical>
<attribute>action</attribute>
<operand>EQUAL</operand>
<value>exit</value>

</statement>
</payload>

</payload>
<delay>0</delay>

</trigger>

This trigger can filter PersonExitZone events. In that case the trigger fires only if the event is related to the kitchen
zone and the person ID can be ANY (valid for ANY person). If the trigger is consistent with the event one or more
commands will be executed.

28.7.6 A thing of type Electric Device is clicked

<trigger>
<name>When an electric device is clicked</name>
<description>When an electric device is clicked</description>
<channel>app.event.sensor.object.behavior.clicked</channel>
<payload>
<payload>

<statement>
<logical>AND</logical>
<attribute>object.type</attribute>
<operand>REGEX</operand>
<value>^EnvObject.ElectricDevice\.(.*)</value>

</statement>
<statement>

<logical>AND</logical>
<attribute>click</attribute>
<operand>EQUALS</operand>
<value>SINGLE_CLICK</value>

</statement>
</payload>

28.7. Examples 63

Freedomotic Developer Manual, Release 5.6.0

</payload>
<persistence>true</persistence>

</trigger>

This trigger will listen (and filter) events of types ObjectReceiveClick because they are sent on channel app.event.
sensor.object.behavior.clicked

These are the received parameters that can be used in the trigger above

• date.day.name EQUALS Thursday

• date.day EQUALS 4

• date.month.name EQUALS October

• date.month EQUALS 10

• date.year EQUALS 2012

• time.hour EQUALS 18

• time.minute EQUALS 15

• time.second EQUALS 15

• object.type EQUALS EnvObject.ElectricDevice.Light

• object.name EQUALS Light one

• object.protocol EQUALS X10

• object.address EQUALS A01

• sender EQUALS JavaFrontend

• click EQUALS SINGLE_CLICK

28.7. Examples 64

CHAPTER 29

Commands

When you create a new command, you can choose from two different ways. The first is the creation of an xml file
deployed in the FREEDOMOTIC_ROOT/data/cmd folder. The second option is to use the EventEditor plugin.

The first choice is the best for developers because it guarantees full control of the values. This is because the EventE-
ditor is still under development.

A Freedomotic command is a container of customizable parameters in the form of parameter = value.

Standard parameters to guarantee the correct routing of the message to the actuator that can execute the task are name,
description and receiver.

Command xml files are messages used to instruct the actuators on which action must be performed.

Some commands are created at runtime, the same way the sensors create events. However, commands can be created
at “design” time by the developer to have this command embedded in the plugin (in PLUGIN_NAME/data/cmd folder)
or they can be created at runtime by the user/configurator (and it will be saved in FREEDOMOTIC_ROOT/data/cmd
folder).

29.1 Commands fields

29.1.1 Properties received by a driver plugin

• @owner.*: all thing properties and behaviors with the value they had before automation execution. If an automa-
tion rises the light brightness values, the property @owner.object.behavior.brightness contains the
starting value not the target value. This is received only by driver plugins.

• +Any plugin specific property, defined in the xml command into data/cmd folder of the plugin itself.

29.1.2 An example (turn on X10 device)

These are the properties received by a driver plugin which implements communication with X10 hardware.

• owner.object.protocol=X10

65

Freedomotic Developer Manual, Release 5.6.0

• owner.object.address=A01

• owner.object.name=Light one

• owner.object.type=EnvObject.ElectricDevice.Light

• owner.object.behavior.brightness=100

• owner.object.behavior.powered=false

• x10.gateway=PMIX35

• x10.function=ON

29.1.3 Properties received by a service plugin

• @event.*: contains all events properties

• @current.*: contains the properties of the event after the evaluation of the previous commands of this automa-
tion. If an automation rises the light brightness value, the property @current.object.behavior.brightness contains
the target value not the starting value.

• +Any plugin specific property, defined in the xml command in data/cmd folder of the plugin itself.

29.1.4 An example (say ElectricDevice current state)

These are the command properties received by a text to speech plugin when the automation IF a light turns
on THEN say ElectricDevice current state is performed.

• event.sender=Light

• event.date.day=4

• event.date.day.name=Thursday

• event.date.month=10

• event.date.month.name=October

• event.date.year=2012

• event.time.hour=18

• event.time.minute=15

• event.time.second=15

• event.object.type=EnvObject.ElectricDevice.Light

• event.object.currentRepresentation=1

• event.object.name=Light one

• event.object.protocol=X10

• event.object.address=A01

• event.object.behavior.powered=true

• event.object.behavior.brightness=100

• current.object.name=Light one

• current.object.type=EnvObject.ElectricDevice.Light

• current.object.protocol=X10

29.1. Commands fields 66

Freedomotic Developer Manual, Release 5.6.0

• current.object.address=A01

• current.object.behavior.powered=true

• current.object.behavior.brightness=100

• say=Light one is on with brightness at 100%.

29.2 The structure of a command

Field| Description ——-|——————- name | A short string that identifies the effect of the command execution (eg:
turn on light in the kitchen) description | An extended description of the effect of the command execution. Write it in
the form “IF an event occurs THEN the system ... yourDescription receiver | The Channel on which the target plugin
is listening to delay | Not Yet Implemented, let this parameter to 0 timeout | waiting time for the plugin reply, if 0 it’s
set to 10 seconds by default properties | A set of properties in form “key = value”.

29.3 Commands for the BehaviorManager

These commands can be used to change objects state in IF this THEN that automations like IF it's dark
THEN turn on garden lights.

Here some example of commands sent to the Freedomotic internal BehaviorsManager. It accepts a predefined set of
properties keys but any plugin can have its own set.

29.4 Command examples

29.4.1 Turn on object named “livingroom light”

<command>
<name>Turn on livingroom light</name>
<receiver>app.events.sensors.behavior.request.objects</receiver>
<description>turns on an object called livingroom light</description>
<editable>true</editable>
<properties>
<properties>

<property name="behavior" value="powered"/>
<property name="value" value="true"/>
<property name="object.name" value="Livingroom light"/>

</properties>
<tuples/>

</properties>
</command>

29.4.2 Switch power of all Light type things in all environments

<command>
<name>switch power for all lights</name>
<receiver>app.events.sensors.behavior.request.objects</receiver>
<description>switch power for all lights</description>
<editable>true</editable>

29.2. The structure of a command 67

Freedomotic Developer Manual, Release 5.6.0

<properties>
<properties>

<property name="behavior" value="powered"/>
<property name="value" value="opposite"/>
<property name="object.class" value="EnvObject.ElectricDevice.Light"/>

</properties>
<tuples/>

</properties>
</command>

29.4.3 Switch power of all Light type objects in room named ‘Kitchen’

<command>
<name>switch power for all kitchen lights</name>
<receiver>app.events.sensors.behavior.request.objects</receiver>
<description>switch power for all kitchen lights</description>
<editable>true</editable>
<properties>
<properties>

<property name="behavior" value="powered"/>
<property name="value" value="opposite"/>
<property name="object.class" value="EnvObject.ElectricDevice.Light"/>
<property name="object.zone" value="Kitchen"/>

</properties>
<tuples/>

</properties>
</command>

29.4.4 Increase brightness (one step) of all Light type things in the environment

<command>
<name>Increase lights brightness</name>
<receiver>app.events.sensors.behavior.request.objects</receiver>
<description>increases light brightness</description>
<editable>true</editable>
<properties>
<properties>

<property name="behavior" value="brightness"/>
<property name="value" value="next"/>
<property name="object.class" value="EnvObject.ElectricDevice.Light"/>

</properties>
<tuples/>

</properties>
</command>

29.4.5 Decrease brightness (one step) of all Light type things in the environment

<command>
<name>Decrease lights brightness</name>
<receiver>app.events.sensors.behavior.request.objects</receiver>
<description>decreases lights brightness</description>
<editable>true</editable>

29.4. Command examples 68

Freedomotic Developer Manual, Release 5.6.0

<properties>
<properties>

<property name="behavior" value="brightness"/>
<property name="value" value="previous"/>
<property name="object.class" value="EnvObject.ElectricDevice.Light"/>

</properties>
<tuples/>

</properties>
</command>

29.5 Command Scripting

Commands parameters can be scripted using javascript syntax like this:

<command>
<name>Say the current temperature converted in Fahrenheit</name>
<receiver>app.actuators.media.tts.in</receiver>
<delay>0</delay>
<timeout>2000</timeout>
<description>say the current temperature using TTS engine</description>
<hardwareLevel>false</hardwareLevel>
<persistence>true</persistence>
<executed>false</executed>
<properties>
<properties>

<property name="say" value="= say="The current temperature in @event.zone is "
→˓+ Math.round(((@event.temperature+40)*1.8)-40) + " Fahrenheit degrees. In Celsius
→˓is @event.temperature degrees"/>

</properties>
<tuples/>

</properties>
</command>

This command uses text to speech to say the current temperature in a zone and makes a on the fly conversion from
degrees Celsius to degrees Fahrenheit. The property key is a variable in the scripting context that can be evaluated.

To make a value scriptable it must start with an “=” just like Excel. Values that do not start with “=” are the same as
the previous Freedomotic versions.

Here other example of scripting:

//sum the first 10 integer and store the value in myVar property
<property name="myVar" value="= myVar=0; for (i=0; i<10; i++) myVar+=i;"/>

//if one is one myVar property is one
<property name="myVar" value="= if (1==1) myVar=1; else myVar="AREYOUJOKING?";"/>

negate the powered value of a thing if true becomes false, if false become true
<property name="myVar" value="= myVar=!@event.object.powered;"/>

29.5. Command Scripting 69

CHAPTER 30

Reactions (aka Automations)

Reactions are based on the concept of Channel, so be sure to have understood this concept before you continue reading.

A reaction consists of a trigger and at least one or more commands. The listed commands are executed sequentially.
The reactions run in parallel within a dedicated thread for each of them. The triggers and the commands are defined in
files that independent from the same reaction, which represents only a link. So it is possible to reuse commands and
triggers in different reactions.

Example:

• Reaction Name: entertainment scenario

• Trigger: TV turns ON

• Command Sequence 1: Turn OFF Livingroom lights

• Command Sequence 2: Close Windows -> Close Blinds

When it is Monday evening, and the TV turns ON, the lights in the livingroom are switched off. At the same time, the
windows begin to close, when all the windows are completely shuted, the system begins to lower the blinds.

XML Representation Reaction are deployed in FREEDOMOTIC_ROOT/data/rea folder. This is the XML describ-
ing the previous scenery.

<reaction>
<trigger>TV turns ON</trigger>
<sequences>
<sequence>

<command>Turn OFF Livingroom lights</command>
</sequence>
<sequence>

<command>Close Livingroom windows</command>
<command>Close Livingroom blinds</command>

</sequence>
</sequences>

</reaction>

70

https://github.com/freedomotic/freedomotic/wiki/The-Channels-Concept

Freedomotic Developer Manual, Release 5.6.0

30.1 Composing triggers in automations (extra-conditions)

This means is possible to create automations like IF [it's morning] AND [livingroom light is on]
THEN [do something].

The extra conditions feature is represented by AND [livingroom light is on] part which allows you to
lookup for the current value of any object on the map to create additional conditions which are evaluated before your
automation is executed.

There is still no frontend support for this feature, you should define it in XML editing the XML file in the data/rea
folder (is the folder which contains the automations, AKA reactions).

Here an example WHEN a door is clicked AND livingroom light is on OR the kitchen
light is on THEN switch the open state of the clicked door

<reaction>
<trigger>When a door is clicked</trigger>
<conditions>
<condition>

<target>Livingroom Light</target>
<statement>

<logical>AND</logical>
<attribute>powered</attribute>
<operand>EQUALS</operand>
<value>true</value>

</statement>
</condition>
<condition>

<target>Kitchen Light</target>
<statement>

<logical>OR</logical>
<attribute>powered</attribute>
<operand>EQUALS</operand>
<value>true</value>

</statement>
</condition>

</conditions>
<sequence>
<command>Switch its open state</command>
<command>test</command>

</sequence>
</reaction>

TODO ADD NEW SYNTAX EXAMPLE FOR EXTRA CONDITIONS

30.1. Composing triggers in automations (extra-conditions) 71

CHAPTER 31

Http helper

This helper retrieves url content (html, json, xml) as string by performing http GET requests. It can also perform xpath
queries on the retrieved content.

Let’s start with an example. We want to retrieve the temperature in Rome from an online service. First of all create a
new helper

HttpHelper http = new HttpHelper();

Remember that is a best practice to reuse this object if you have to do multiple requests

31.1 Retrieve text content (no authentication)

Using retrieveContent(String url) you can specify the online service url to retrieve data from and print
the string on the console

String xml = http.retrieveContent("http://api.openweathermap.org/data/2.5/weather?
→˓q=Roma&mode=xml");
System.out.println(xml);

Here the complete code included into a <try><catch> block to manage IO exceptions

try {
String xml = http.retrieveContent("http://api.openweathermap.org/data/2.5/weather?

→˓q=Roma&mode=xml");
System.out.println(xml);

} catch (IOException ex) {
//handle exception here

}

72

Freedomotic Developer Manual, Release 5.6.0

31.2 Retrieve text content (with authentication)

If the service requires authentication you can use retrieveContent(String url, String username,
String password).

31.3 Perform XPath queries on an URL content

In this example we are quering an XML Rest API to retrieve the current temperature in Rome and the related unit in
which the temperature value is expressed. Note: Instead of null values you can pass username and password to access
the service. Note: XPath queries works on XML content only

try {
List<String> values = http.queryXml(

"http://api.openweathermap.org/data/2.5/weather?q=Roma&mode=xml", null, null,
"//current/temperature/@value",
"//current/temperature/@unit");

// Prints 'Temperature in Rome is 234 kelvin'
System.out.println("Temperature in Rome is " + values.get(0) + " " + values.get(1));

} catch (IOException ex) {
//handle exception here

}

31.2. Retrieve text content (with authentication) 73

CHAPTER 32

Serial helper

This service is based on JSSC library.

First of all you must create a new SerialHelper and set your port parameters in the following order:

• port name (/dev/ttyUSBx or /dev/ttyACMx for Linux; COMx for Windows)

• baud rate

• data bits

• parity bit

• stop bits

Also you can override onDataAvailable(String data) method to define how to manage read data. For example you can
send received data to another method.

SerialHelper usb = new SerialHelper("/dev/ttyUSB0", 19200, 8, 1, 0, new
→˓SerialPortListener() {
@Override
public void onDataAvailable(String data) {
System.out.println("DEBUG: received: " + data);

}
});

By default data are read continuously. If you want to read a chunk of data with a specific terminator char you can set
it as

usb.setReadTerminator("\n");

or if you want to read a chunk with a fixed dimension you can set it as

usb.setChunkSize(5);

Sending a string to the serial port is very simple

74

https://github.com/scream3r/java-simple-serial-connector
http://en.wikipedia.org/wiki/Serial_port

Freedomotic Developer Manual, Release 5.6.0

usb.write("ABCD");

Here the complete example

SerialHelper usb = new SerialHelper("/dev/ttyUSB0", 19200, 8, 1, 0, new
→˓SerialPortListener() {
@Override
public void onDataAvailable(String data) {
System.out.println("DEBUG: received: " + data);

}
});

usb.setReadTerminator("\n"); //receive until this terminator char
//ALTERNATIVE: usb.setChunkSize(5); //receive messages of 5 chars each
usb.write("ABCD");

32.1 Complete examples

Arduino USB plugin

32.1. Complete examples 75

https://github.com/freedomotic/freedomotic/blob/master/plugins/devices/arduinousb/src/main/java/com/freedomotic/plugins/devices/arduinousb/ArduinoUSB.java

CHAPTER 33

Udp helper

This helper allows to start an UDP server listenig on a specific port and send UDP packets to a remote host.

Let’s start with an example. We want to add a server listening on port 7777.

First of all create a new helper and start the server specifying ip address, port number and a listener

UdpHelper udpserver = new UpdHelper();
udpServer.startServer("0.0.0.0", 7777, new UdpListener() {

@Override
public void onDataAvailable(String sourceAddress, Integer sourcePort,

→˓String data) {
System.out.println("UDP packet received: {0}", data);
// here add the code to execute when a packet is received

});

When a new packet arrives you can see the payload on the log as a string and execute any code added to onDataAvail-
able method.

It’d be better to stop the server and unbound the port with

udpServer.stop()

33.1 How to send a packet

To send a packet you need only the ip and port number of the remote host and a string representing the payload.

For example:

udpServer.send("192.168.0.120", 8899, "payload to send");

76

CHAPTER 34

Natural language processing

It takes in input some text, analyzes it to compute a similarity value related to a set of predefined objects available for
the system (eg: automation commands)

34.1 How to work

It makes a text analysis and ranks objects according to their similarity value. These objects are typically Commands, for
example a speech recognition algorithm returns a text and you want to identify the most similar predefined command
to execute it. Beware that computing similarity may be CPU intensive. Similarity may be computed with different
algorithms. Our solution is based on Damerau-Levenshtein distance. View our implementation.

34.2 How to use it

The software listens to free-form (natural language) text commands on channel app.commands.interpreter.
nlp and executes most similar command that the framework has in memory. For example a speech recognition utility
may return a free-form text that can be interpreted by this module as an executable command. Another example is a
chat bot that executes text commands.

34.3 Code sample

Command nlpCommand = new Command();
nlpCommand.setName("Recognize text with NLP");
nlpCommand.setReceiver("app.commands.interpreter.nlp");
nlpCommand.setDescription("A free-form text command to be interpreded by an NLP module
→˓");
nlpCommand.setProperty("text", text);
nlpCommand.setReplyTimeout(10000);
Command reply = send(nlpCommand);

77

https://github.com/freedomotic/freedomotic/wiki/Commands
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-core/src/main/java/com/freedomotic/nlp/NlpCommandStringDistanceImpl.java

Freedomotic Developer Manual, Release 5.6.0

A complete code sample can be found here.

34.3. Code sample 78

https://github.com/freedomotic/freedomotic/blob/master/plugins/devices/simulation/src/main/java/com/freedomotic/plugins/VariousSensors.java

CHAPTER 35

P2P

Implementation of p2p synchronization of different Freedomotic instances. If you turn on a light in instanceA the
change is reflected in instanceB. Also moving an object changes its location in both instances.

In details

• there is no need to duplicate a plugin installing it on many instances, expecially for hardware related plugins
where should be only one. The system is really distributed (despite the current data synch mechanism which
is not perfect). If a plugin is duplicated you get load balance between the instances. As the core is always
duplicated the core tasks are always load balanced between instances

• messaging pattern: the first command will be executed by instanceA, the second by instanceB and so on in a
round robin way splitting the load.

Each instance has a complete copy of the data so you can turn off the other instances when you want. For sure you’ll
loose the “local not replicated plugins” but the system will be online and you will not notice any “recovery delay”
because each instance always uses its local data, which are silently synchronized with the others.

Now we have a “state synchronization” but when we’ll refine the mechanism we will have a “completely replicated
cache” which is far better than the current system.

79

Freedomotic Developer Manual, Release 5.6.0

35.1 Roadmap

To reach this goal we made some changes:

• identified a single Freedomotic instance using an unique id and appended this id to each generated message

• changed the messaging broker url to peer://freedomotic/INSTANCE_UUID

• changed broker websocket and stomp endpoints to run on the first available port, otherwise it couldn’t start two
different Freedomotic instances on the same machine as the port would be already in use. This means the port
for ws and stomp endpoints will change at each running.

35.2 TODO

• implement a “fix port number” in the config.xml file to make it static when needed

• add a SynchManager component (already developed in its first raw version)

• get startup data from another already running Freedmotic instance

35.1. Roadmap 80

https://github.com/freedomotic/freedomotic/blob/b4fad6bb5e12d94c6605eadccfe9876fbd8f5a54/framework/freedomotic-core/src/main/java/com/freedomotic/core/SynchManager.java

Freedomotic Developer Manual, Release 5.6.0

35.3 How to use

Workaround for now is sharing the data folder on Dropbox and make both instances to read from the same folder to
start. No problem if you run both instances from the same PC because they already share a common data folder.

Note: The restapi3 port is still static (9111) so the second Freedomotic instance will not be able to start this plugin. If
you run two instances from the same system the problem is automatically solved (the second one cannot start because
the port is already in use). If Freedomotic is installed on two RaspberryPis, then restapi plugin should be removed
from the other instance before startup.

35.3. How to use 81

CHAPTER 36

Security: authentication and authorization

Freedomotic uses Apache Shiro, a Java security framework, to manage authentication and authorization.

This tool is very flexible, and offers many other features as cryptography and session management. Also, it’s very easy
to configure and use.

All the classes are accessible from this folder.

Currently we adopt Apache Shiro v1.3.2

36.1 Authentication

The class UserRealm makes the work. All users’ data are stored in users.xml files located in config folder.

<?xml version="1.0" encoding="UTF-8" ?>
<users>
<user>
<principals>

<principal realm="com.freedomotic.security" primary="true">system</principal>
</principals>
<credentials>p9aAW+vW4EWkTHsfNWWJcTGBOhUya1ORvu/dvU/A+0g=</credentials>
<salt>zpGvSXleABptoH8/eq/xMrIkeStJzCT4JbNUe7LpL9g=</salt>
<roles>

<role name="administrators"/>
</roles>
<properties>

<property name="language" value="auto"/>
</properties>
</user>
<user>
<principals>

<principal realm="com.freedomotic.security" primary="true">admin</principal>
</principals>
<credentials>rfx9xwecAlh7Z45fUK+Gi+CSOirq1U2IdmQBTHXoeCw=</credentials>
<salt>fX5WIcGU2ESqc6ECdOccJuM1ox5brXrOYxWw0EpJTHY=</salt>

82

https://shiro.apache.org/
https://github.com/freedomotic/freedomotic/tree/master/framework/freedomotic-core/src/main/java/com/freedomotic/security
https://github.com/freedomotic/freedomotic/blob/master/framework/freedomotic-core/src/main/java/com/freedomotic/security/UserRealm.java

Freedomotic Developer Manual, Release 5.6.0

<roles>
<role name="administrators"/>

</roles>
<properties>

<property name="language" value="auto"/>
</properties>
</user>
<user>
<principals>

<principal realm="com.freedomotic.security" primary="true">guest</principal>
</principals>
<credentials>TRN2QAmWB9oPk2E9JSZOcQxDmOZU/G1BGrjB92KQfPA=</credentials>
<salt>vwoYXjSDQzqvr05h+xBprF5pCzGgQhfMAiG95kk67x4=</salt>
<roles>

<role name="guests"/>
</roles>
<properties>

<property name="language" value="auto"/>
</properties>
</user>

</users>

Credentials are saved in hash format (SHA-256).

Every user has a specific role as reported in roles.xml file.

<?xml version="1.0" encoding="UTF-8" ?>
<roles>
<role name="administrators">
<permissions>

<permission>*</permission>
</permissions>
</role>
<role name="system">
<permissions>
<permission>*</permission>

</permissions>
</role>
<role name="guests">
<permissions>
<permission>*:read</permission>

</permissions>
</role>
<role name="managers">
<permissions>
<permission>*:create,read,update,delete</permission>

</permissions>
</role>

</roles>

A role defines a system profile, and gives some permissions to interact with the system.

We have four different roles: administrators, system, guests and managers. The first two have unlimited privileges.

36.2 Authorization

Privileges are managed via privileges.list file. Each section reports a list of allowed actions.

36.2. Authorization 83

Freedomotic Developer Manual, Release 5.6.0

#Currently supported and used privileges

[environments]
environments:create
environments:read
environments:update
environments:delete
environments:load #from file
environments:save #to file

[zones]
zones:create
zones:read
zones:update
zones:delete

[objects]
objects:create
objects:read
objects:update
objects:delete
objects:load #from file
objects:save #to file

[system]
sys:config:load
sys:plugins:load
sys:plugins:read
sys:plugins:start
sys:plugins:stop
sys:plugins:update
sys:shutdown

[auth]
auth:privileges:update
auth:privileges:read
auth:realms:create
auth:realms:delete

#Privileges to be added soon

[triggers]
[reactions]
[commands]

36.2. Authorization 84

CHAPTER 37

Freedomotic API

Freedomotic exposes its functionalities by RestAPI v3 plugin.

It implements a RESTful service based on Jersey and Atmosphere framework.

So it’s possible to create a custom client (not only in Java but in every language can consume a REST service) to
interact with our platform.

For more details about the plugin configuration you can visit this link.

85

https://github.com/freedomotic/freedomotic/tree/master/plugins/devices/restapi-v3
http://freedomotic-user-manual.readthedocs.io/en/latest/plugins/restapi.html

	What is Freedomotic?
	Vision
	Mission
	Current development stage

	Project History
	Team
	Features
	Developers Quick Start
	Requirements
	Set your local development environment
	Git repository is an SDK
	Create a build release
	Support

	Maven quick reference sheet
	Priming build
	How to start Freedomotic
	Compile and test your own plugin
	Upload your own plugin on the marketplace

	Contributors workflow
	How to contribute
	More Info

	The `Hello World' Plugin
	Get familiar with Freedomotic

	Architecture components
	Framework
	Plugins
	Plugins, Objects and Automations interaction

	Freedomotic Messaging System
	A Message Journey

	Channels
	Wildcard subscription
	Channel Examples

	Data structures
	Environment topology
	Plugins
	Accessing Data Structures from Crosslanguage Plugins

	What is a plugin?
	Plugin Features
	How to make a non-Java application communicate with Freedomotic

	Plugins manifest and configuration
	What's inside the manifest
	Add configuration blocks to your plugin
	Messaging channel

	Create a new plugin
	From template
	From an archetype
	Behind the scene
	Plugin folder structure

	Plugin lifecycle
	Bind things state to hardware data
	Read data from hardware
	Specify the new object state in the notified event
	Create a hardware trigger to be configured as Data source
	Write data to hardware

	Bind things state to web services
	Parse data from the Webservice
	Send a Freedomotic event

	Handle plugin errors
	Listen to Events programmatically
	Auto discover and auto configure things
	How to enable auto discovering in your plugin

	Internationalization
	Adding internationalization support
	Behind the scenes - what happens when calling i18n.msg()?
	Making custom plugin translations
	Accessing custom plugin translations
	Composing strings

	Plugin samples
	What is a thing?
	Create new thing types
	Predefined behaviors
	Load the object as a plugin
	Create instances of your new object type
	Boolean behavior
	Ranged int behavior
	Exclusive multivalue behavior
	Views section
	Actions section

	Add new thing templates
	Events
	Generic event properties
	Predefined events
	More info in Javadoc

	Triggers
	How to filter events using triggers
	How to filter received event parameters
	Max execution limit and flood control
	Listening to Channels with wildcard paths
	Trigger scripting
	Deploy a trigger
	Examples

	Commands
	Commands fields
	The structure of a command
	Commands for the BehaviorManager
	Command examples
	Command Scripting

	Reactions (aka Automations)
	Composing triggers in automations (extra-conditions)

	Http helper
	Retrieve text content (no authentication)
	Retrieve text content (with authentication)
	Perform XPath queries on an URL content

	Serial helper
	Complete examples

	Udp helper
	How to send a packet

	Natural language processing
	How to work
	How to use it
	Code sample

	P2P
	Roadmap
	TODO
	How to use

	Security: authentication and authorization
	Authentication
	Authorization

	Freedomotic API

